57 research outputs found

    RIPK1 protects from TNF-α-mediated liver damage during hepatitis

    Get PDF
    Cell death of hepatocytes is a prominent characteristic in the pathogenesis of liver disease, while hepatolysis is a starting point of inflammation in hepatitis and loss of hepatic function. However, the precise molecular mechanisms of hepatocyte cell death, the role of the cytokines of hepatic microenvironment and the involvement of intracellular kinases, remain unclear. Tumor necrosis factor alpha (TNF-alpha) is a key cytokine involved in cell death or survival pathways and the role of RIPK1 has been associated to the TNF-alpha-dependent signaling pathway. We took advantage of two different deficient mouse lines, the RIPK1 kinase dead knock-in mice (Ripk1K45A) and the conditional knockout mice lacking RIPK1 only in liver parenchymal cells (Ripk1LPC-KO), to characterize the role of RIPK1 and TNF-alpha in hepatitis induced by concanavalin A (ConA). Our results show that RIPK1 is dispensable for liver homeostasis under steady-state conditions but in contrast, RIPK1 kinase activity contributes to caspase-independent cell death induction following ConA injection and RIPK1 also serves as a scaffold, protecting hepatocytes from massive apoptotic cell death in this model. In the Ripk1LPC-KO mice challenged with ConA, TNF-alpha triggers apoptosis, responsible for the observed severe hepatitis. Mechanism potentially involves both TNF-independent canonical NF-kappa B activation, as well as TNF-dependent, but canonical NF-kappa B-independent mechanisms. In conclusion, our results suggest that RIPK1 kinase activity is a pertinent therapeutic target to protect liver against excessive cell death in liver diseases

    The Naturally Processed CD95L Elicits a c-Yes/Calcium/PI3K-Driven Cell Migration Pathway

    Get PDF
    Patients affected by chronic inflammatory disorders display high amounts of soluble CD95L. This homotrimeric ligand arises from the cleavage by metalloproteases of its membrane-bound counterpart, a strong apoptotic inducer. In contrast, the naturally processed CD95L is viewed as an apoptotic antagonist competing with its membrane counterpart for binding to CD95. Recent reports pinpointed that activation of CD95 may attract myeloid and tumoral cells, which display resistance to the CD95-mediated apoptotic signal. However, all these studies were performed using chimeric CD95Ls (oligomerized forms), which behave as the membrane-bound ligand and not as the naturally processed CD95L. Herein, we examine the biological effects of the metalloprotease-cleaved CD95L on CD95-sensitive activated T-lymphocytes. We demonstrate that cleaved CD95L (cl-CD95L), found increased in sera of systemic lupus erythematosus (SLE) patients as compared to that of healthy individuals, promotes the formation of migrating pseudopods at the leading edge of which the death receptor CD95 is capped (confocal microscopy). Using different migration assays (wound healing/Boyden Chamber/endothelial transmigration), we uncover that cl-CD95L promotes cell migration through a c-yes/Ca2+/PI3K-driven signaling pathway, which relies on the formation of a CD95-containing complex designated the MISC for Motility-Inducing Signaling Complex. These findings revisit the role of the metalloprotease-cleaved CD95L and emphasize that the increase in cl-CD95L observed in patients affected by chronic inflammatory disorders may fuel the local or systemic tissue damage by promoting tissue-filtration of immune cells

    The Translocation Motif of Hepatitis B Virus Envelope Proteins Is Dispensable for Infectivityâ–ż

    No full text
    The early events of hepatitis B virus (HBV) infection remain unclear. In 2006, Stoeckl et al. proposed a new entry mechanism involving a translocation motif (TLM) present in the pre-S2 domain of envelope proteins (L. Stoeckl, A. Funk, A. Kopitzki, B. Brandenburg, S. Oess, H. Will, H. Sirma, and E. Hildt, Proc. Natl. Acad. Sci. USA 103:6730-6734, 2006). After receptor binding and internalization into the endosomal compartment, this motif would allow the translocation of HBV particles through the endosomal membrane into the cytosol. In this study we have used two different mutated viruses containing a truncated TLM and showed their ability to infect human hepatocytes in primary culture, thus demonstrating the dispensability of the TLM for HBV infectivity

    Recent contributions of in vitro models to our understanding of hepatitis C virus life cycle.

    No full text
    International audienceHepatitis C virus is a human pathogen responsible for liver diseases including acute and chronic hepatitis, cirrhosis and hepatocellular carcinoma. Its high prevalence, the absence of a prophylactic vaccine and the poor efficiency of current therapies are huge medical problems. Since the discovery of the hepatitis C virus, our knowledge of its biology has been largely punctuated by the development of original models of research. At the end of the 1980s, the chimpanzee model led to cloning of the viral genome and the definition of infectious molecular clones. In 1999, a breakthrough was achieved with the development of a robust in vitro replication model named 'replicon'. This system allowed intensive research into replication mechanisms and drug discovery. Later, in 2003, pseudotyped retroviruses harbouring surface proteins of hepatitis C virus were produced to specifically investigate the viral entry process. It was only in 2005 that infectious viruses were produced in vitro, enabling intensive investigations into the entire life cycle of the hepatitis C virus. This review describes the different in vitro models developed to study hepatitis C virus, their contribution to current knowledge of the virus biology and their future research applications

    The First Transmembrane Domain of the Hepatitis B Virus Large Envelope Protein Is Crucial for Infectivityâ–ż

    No full text
    The early steps of the hepatitis B virus (HBV) life cycle are still poorly understood. Indeed, neither the virus receptor at the cell surface nor the mechanism by which nucleocapsids are delivered to the cytosol of infected cells has been identified. Extensive mutagenesis studies in pre-S1, pre-S2, and most of the S domain of envelope proteins revealed the presence of two regions essential for HBV infectivity: the 77 first residues of the pre-S1 domain and a conformational motif in the antigenic loop of the S domain. In addition, at the N-terminal extremity of the S domain, a putative fusion peptide, partially overlapping the first transmembrane (TM1) domain and preceded by a PEST sequence likely containing several proteolytic cleavage sites, was identified. Since no mutational analysis of these two motifs potentially implicated in the fusion process was performed, we decided to investigate the ability of viruses bearing contiguous deletions or substitutions in the putative fusion peptide and PEST sequence to infect HepaRG cells. By introducing the mutations either in the L and M proteins or in the S protein, we demonstrated the following: (i) that in the TM1 domain of the L protein, three hydrophobic clusters of four residues were necessary for infectivity; (ii) that the same clusters were critical for S protein expression; and, finally, (iii) that the PEST sequence was dispensable for both assembly and infection processes

    Entry of pseudotyped hepatitis C virus into primary human hepatocytes depends on the scavenger class B type I receptor.

    No full text
    International audienceEntry of the hepatitis C virus (HCV) into the cell seems to be a complex multi-step process involving several cellular factors such as the scavenger class B type I receptor (SRBI). Until now, all investigations conducted to assess the involvement of SRBI have been based on in vitro infection models which use human hepatoma-derived cell lines. However, the HCV entry pathway may be altered in these types of cells because of the impairment of some hepatic characteristics. In this study, we showed that SRBI also plays an essential role in HCV entry into primary human hepatocytes with two distinct approaches: gene extinction and antibodies neutralization assays
    • …
    corecore