7 research outputs found

    Towards FAIRification of sensitive and fragmented rare disease patient data:challenges and solutions in European reference network registries

    Get PDF
    INTRODUCTION: Rare disease patient data are typically sensitive, present in multiple registries controlled by different custodians, and non-interoperable. Making these data Findable, Accessible, Interoperable, and Reusable (FAIR) for humans and machines at source enables federated discovery and analysis across data custodians. This facilitates accurate diagnosis, optimal clinical management, and personalised treatments. In Europe, twenty-four European Reference Networks (ERNs) work on rare disease registries in different clinical domains. The process and the implementation choices for making data FAIR (‘FAIRification’) differ among ERN registries. For example, registries use different software systems and are subject to different legal regulations. To support the ERNs in making informed decisions and to harmonise FAIRification, the FAIRification steward team was established to work as liaisons between ERNs and researchers from the European Joint Programme on Rare Diseases. RESULTS: The FAIRification steward team inventoried the FAIRification challenges of the ERN registries and proposed solutions collectively with involved stakeholders to address them. Ninety-eight FAIRification challenges from 24 ERNs’ registries were collected and categorised into “training” (31), “community” (9), “modelling” (12), “implementation” (26), and “legal” (20). After curating and aggregating highly similar challenges, 41 unique FAIRification challenges remained. The two categories with the most challenges were “training” (15) and “implementation” (9), followed by “community” (7), and then “modelling” (5) and “legal” (5). To address all challenges, eleven types of solutions were proposed. Among them, the provision of guidelines and the organisation of training activities resolved the “training” challenges, which ranged from less-technical “coffee-rounds” to technical workshops, from informal FAIR Games to formal hackathons. Obtaining implementation support from technical experts was the solution type for tackling the “implementation” challenges. CONCLUSION: This work shows that a dedicated team of FAIR data stewards is an asset for harmonising the various processes of making data FAIR in a large organisation with multiple stakeholders. Additionally, multi-levelled training activities are required to accommodate the diverse needs of the ERNs. Finally, the lessons learned from the experience of the FAIRification steward team described in this paper may help to increase FAIR awareness and provide insights into FAIRification challenges and solutions of rare disease registries. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13023-022-02558-5

    Surveyed common data access policies preferences amongst European Reference Networks

    Get PDF
    Background: Data sharing amongst existing Rare Disease (RD) registries, even though being a process that presents multiple barriers, would enrich and ease research, as well as facilitate interoperability between the registries themselves. Methods: To understand their preferences on sharing data, we surveyed 24 European Reference Networks (ERNs) from the RD Domain. Results: The answers show that most ERNs are willing to share a set of Common Data Elements for free with authenticated users at an aggregated or pseudonymized level the moment the data is collected. The one exception is the industry sector, to which ERNs prefer to ask for a fee. Objective: Our aim is to create a reference for how most RD registries are willing to share their data, improving the ability of other stakeholders to make informed decisions to make their data interoperable.</p

    Surveyed common data access policies preferences amongst European Reference Networks

    Get PDF
    Background: Data sharing amongst existing Rare Disease (RD) registries, even though being a process that presents multiple barriers, would enrich and ease research, as well as facilitate interoperability between the registries themselves. Methods: To understand their preferences on sharing data, we surveyed 24 European Reference Networks (ERNs) from the RD Domain. Results: The answers show that most ERNs are willing to share a set of Common Data Elements for free with authenticated users at an aggregated or pseudonymized level the moment the data is collected. The one exception is the industry sector, to which ERNs prefer to ask for a fee. Objective: Our aim is to create a reference for how most RD registries are willing to share their data, improving the ability of other stakeholders to make informed decisions to make their data interoperable.</p

    Towards FAIRification of sensitive and fragmented rare disease patient data: challenges and solutions in European reference network registries

    No full text
    Introduction: Rare disease patient data are typically sensitive, present in multiple registries controlled by different custodians, and non-interoperable. Making these data Findable, Accessible, Interoperable, and Reusable (FAIR) for humans and machines at source enables federated discovery and analysis across data custodians. This facilitates accurate diagnosis, optimal clinical management, and personalised treatments. In Europe, twenty-four European Reference Networks (ERNs) work on rare disease registries in different clinical domains. The process and the implementation choices for making data FAIR (‘FAIRification’) differ among ERN registries. For example, registries use different software systems and are subject to different legal regulations. To support the ERNs in making informed decisions and to harmonise FAIRification, the FAIRification steward team was established to work as liaisons between ERNs and researchers from the European Joint Programme on Rare Diseases. Results: The FAIRification steward team inventoried the FAIRification challenges of the ERN registries and proposed solutions collectively with involved stakeholders to address them. Ninety-eight FAIRification challenges from 24 ERNs’ registries were collected and categorised into “training” (31), “community” (9), “modelling” (12), “implementation” (26), and “legal” (20). After curating and aggregating highly similar challenges, 41 unique FAIRification challenges remained. The two categories with the most challenges were “training” (15) and “implementation” (9), followed by “community” (7), and then “modelling” (5) and “legal” (5). To address all challenges, eleven types of solutions were proposed. Among them, the provision of guidelines and the organisation of training activities resolved the “training” challenges, which ranged from less-technical “coffee-rounds” to technical workshops, from informal FAIR Games to formal hackathons. Obtaining implementation support from technical experts was the solution type for tackling the “implementation” challenges. Conclusion: This work shows that a dedicated team of FAIR data stewards is an asset for harmonising the various processes of making data FAIR in a large organisation with multiple stakeholders. Additionally, multi-levelled training activities are required to accommodate the diverse needs of the ERNs. Finally, the lessons learned from the experience of the FAIRification steward team described in this paper may help to increase FAIR awareness and provide insights into FAIRification challenges and solutions of rare disease registries
    corecore