22 research outputs found

    The astrophysics of nanohertz gravitational waves

    Get PDF
    Pulsar timing array (PTA) collaborations in North America, Australia, and Europe, have been exploiting the exquisite timing precision of millisecond pulsars over decades of observations to search for correlated timing deviations induced by gravitational waves (GWs). PTAs are sensitive to the frequency band ranging just below 1 nanohertz to a few tens of microhertz. The discovery space of this band is potentially rich with populations of inspiraling supermassive black hole binaries, decaying cosmic string networks, relic post-inflation GWs, and even non-GW imprints of axionic dark matter. This article aims to provide an understanding of the exciting open science questions in cosmology, galaxy evolution, and fundamental physics that will be addressed by the detection and study of GWs through PTAs. The focus of the article is on providing an understanding of the mechanisms by which PTAs can address specific questions in these fields, and to outline some of the subtleties and difficulties in each case. The material included is weighted most heavily toward the questions which we expect will be answered in the near-term with PTAs; however, we have made efforts to include most currently anticipated applications of nanohertz GWs

    A powerful bursting radio source towards the Galactic Centre

    Full text link
    Transient astronomical sources are typically powered by compact objects and usually signify highly explosive or dynamic events. While radio astronomy has an impressive record of obtaining high time resolution observations, usually it is achieved in quite narrow fields-of-view. Consequently, the dynamic radio sky is poorly sampled, in contrast to the situation in the X- and gamma-ray bands in which wide-field instruments routinely detect transient sources. Here we report a new transient source, GCRT J1745-3009, detected in 2002 during a moderately wide-field radio transient monitoring program of the Galactic center (GC) region at 0.33 GHz. The characteristics of its bursts are unlike those known for any other class of radio transient. If located in or near the GC, its brightness temperature (~10^16 K) and the implied energy density within GCRT J1745-3009 vastly exceeds that observed in most other classes of radio astronomical sources, and is consistent with coherent emission processes rarely observed. We conclude that GCRT J1745-3009 is the first member of a new class of radio transient sources, the first of possibly many new classes to be identified through current and upcoming radio surveys.Comment: 16 pages including 3 figures. Appears in Nature, 3 March 200

    DAYENU: a simple filter of smooth foregrounds for intensity mapping power spectra

    Get PDF
    We introduce DPSS Approximate lazY filtEriNg of foregroUnds (DAYENU), a linear, spectral filter for H I intensity mapping that achieves the desirable foreground mitigation and error minimization properties of inverse co-variance weighting with minimal modelling of the underlying data. Beyond 21-cm power-spectrum estimation, our filter is suitable for any analysis where high dynamic-range removal of spectrally smooth foregrounds in irregularly (or regularly) sampled data is required, something required by many other intensity mapping techniques. Our filtering matrix is diagonalized by Discrete Prolate Spheroidal Sequences which are an optimal basis to model band-limited foregrounds in 21-cm intensity mapping experiments in the sense that they maximally concentrate power within a finite region of Fourier space. We show that DAYENU enables the access of large-scale line-of-sight modes that are inaccessible to tapered discrete Fourier transform estimators. Since these modes have the largest SNRs,DAYENU significantly increases the sensitivity of 21-cm analyses over tapered Fourier transforms. Slight modifications allow us to use DAYENU as a linear replacement for iterative delay CLEAN ing (DAYENUREST). We refer readers to the Code section at the end of this paper for links to examples and code

    The Unanticipated Phenomenology of the Blazar PKS 2131-021: A Unique Supermassive Black Hole Binary Candidate

    Get PDF
    Most large galaxies host supermassive black holes in their nuclei and are subject to mergers, which can produce a supermassive black hole binary (SMBHB), and hence periodic signatures due to orbital motion. We report unique periodic radio flux density variations in the blazar PKS 2131-021, which strongly suggest an SMBHB with an orbital separation of similar to 0.001-0.01 pc. Our 45.1 yr radio light curve shows two epochs of strong sinusoidal variation with the same period and phase to within less than or similar to 2% and similar to 10%, respectively, straddling a 20 yr period when this variation was absent. Our simulated light curves accurately reproduce the "red noise" of this object, and Lomb-Scargle, weighted wavelet Z-transform and least-squares sine-wave analyses demonstrate conclusively, at the 4.6 sigma significance level, that the periodicity in this object is not due to random fluctuations in flux density. The observed period translates to 2.082 +/- 0.003 yr in the rest frame at the z = 1.285 redshift of PKS 2131-021. The periodic variation in PKS 2131-021 is remarkably sinusoidal. We present a model in which orbital motion, combined with the strong Doppler boosting of the approaching relativistic jet, produces a sine-wave modulation in the flux density that easily fits the observations. Given the rapidly developing field of gravitational-wave experiments with pulsar timing arrays, closer counterparts to PKS 2131-021 and searches using the techniques we have developed are strongly motivated. These results constitute a compelling demonstration that the phenomenology, not the theory, must provide the lead in this field

    The NANOGrav 15 yr Data Set: Search for Transverse Polarization Modes in the Gravitational-wave Background

    Get PDF
    \ua9 2024. The Author(s). Published by the American Astronomical Society.Recently we found compelling evidence for a gravitational-wave background with Hellings and Downs (HD) correlations in our 15 yr data set. These correlations describe gravitational waves as predicted by general relativity, which has two transverse polarization modes. However, more general metric theories of gravity can have additional polarization modes, which produce different interpulsar correlations. In this work, we search the NANOGrav 15 yr data set for evidence of a gravitational-wave background with quadrupolar HD and scalar-transverse (ST) correlations. We find that HD correlations are the best fit to the data and no significant evidence in favor of ST correlations. While Bayes factors show strong evidence for a correlated signal, the data does not strongly prefer either correlation signature, with Bayes factors ∌2 when comparing HD to ST correlations, and ∌1 for HD plus ST correlations to HD correlations alone. However, when modeled alongside HD correlations, the amplitude and spectral index posteriors for ST correlations are uninformative, with the HD process accounting for the vast majority of the total signal. Using the optimal statistic, a frequentist technique that focuses on the pulsar-pair cross-correlations, we find median signal-to-noise ratios of 5.0 for HD and 4.6 for ST correlations when fit for separately, and median signal-to-noise ratios of 3.5 for HD and 3.0 for ST correlations when fit for simultaneously. While the signal-to-noise ratios for each of the correlations are comparable, the estimated amplitude and spectral index for HD are a significantly better fit to the total signal, in agreement with our Bayesian analysis

    Radio Astronomy in LSST Era

    No full text
    A community meeting on the topic of "Radio Astronomy in the LSST Era" was hosted by the National Radio Astronomy Observatory in Charlottesville, VA (2013 May 6--8). The focus of the workshop was on time domain radio astronomy and sky surveys. For the time domain, the extent to which radio and visible wavelength observations are required to understand several classes of transients was stressed, but there are also classes of radio transients for which no visible wavelength counterpart is yet known, providing an opportunity for discovery. From the LSST perspective, the LSST is expected to generate as many as 1 million alerts nightly, which will require even more selective specification and identification of the classes and characteristics of transients that can warrant follow up, at radio or any wavelength. The LSST will also conduct a deep survey of the sky, producing a catalog expected to contain over 38 billion objects in it. Deep radio wavelength sky surveys will also be conducted on a comparable time scale, and radio and visible wavelength observations are part of the multi-wavelength approach needed to classify and understand these objects. Radio wavelengths are valuable because they are unaffected by dust obscuration and, for galaxies, contain contributions both from star formation and from active galactic nuclei. The workshop touched on several other topics, on which there was consensus including the placement of other LSST "Deep Drilling Fields," inter-operability of software tools, and the challenge of filtering and exploiting the LSST data stream. There were also topics for which there was insufficient time for full discussion or for which no consensus was reached, which included the procedures for following up on LSST observations and the nature for future support of researchers desiring to use LSST data products

    Late-time Evolution and Modeling of the Off-axis Gamma-Ray Burst Candidate FIRST J141918.9+394036

    No full text
    We present new radio and optical data, including very-long-baseline interferometry, as well as archival data analysis, for the luminous, decades-long radio transient FIRST J141918.9+394036. The radio data reveal a synchrotron selfabsorption peak around 0.3 GHz and a radius of around 1.3 mas (0.5 pc) 26 yr post-discovery, indicating a blastwave energy ∌5 × 1050 erg. The optical spectrum shows a broad [O III]λ4959,5007 emission line that may indicate collisional excitation in the host galaxy, but its association with the transient cannot be ruled out. The properties of the host galaxy are suggestive of a massive stellar progenitor that formed at low metallicity. Based on the radio light curve, blastwave velocity, energetics, nature of the host galaxy and transient rates, we find that the properties of J1419+3940 are most consistent with long gamma-ray burst (LGRB) afterglows. Other classes of (optically discovered) stellar explosions as well as neutron star mergers are disfavored, and invoking any exotic scenario may not be necessary. It is therefore likely that J1419+3940 is an off-axis LGRB afterglow (as suggested by Law et al. and Marcote et al.), and under this premise the inverse beaming fraction is found to be f b-1 280 -200 +700, corresponding to an average jet half-opening angle -5 -2+4 degrees (68% confidence), consistent with previous estimates. From the volumetric rate we predict that surveys with the Very Large Array, Australian Square Kilometre Array Pathfinder, and MeerKAT will find a handful of J1419+3940-like events over the coming years

    First Detection of Two Near-Earth Asteroids With a Southern Hemisphere Planetary Radar System

    Full text link
    We describe the first demonstration of a Southern Hemisphere planetary radar system to detect two near-Earth asteroids (NEAs). The demonstration was conducted in a bistatic manner, with the 70 m antenna of the Canberra Deep Space Communications Complex transmitting at 2.1 GHz and reception at the Parkes Radio Telescope, outfitted with multiple receivers, and the Australia Telescope Compact Array. This initial system was used to detect the NEAs (43577) 2005 UL5 and (33342) 1998 WT24 during their close approaches in 2015 November and 2015 December, respectively. We describe the performance of the system and consider future possibilities using other antennas of the Canberra Deep Space Communications Complex as transmitters
    corecore