1,383 research outputs found
Standard-smooth hybrid inflation
We consider the extended supersymmetric Pati-Salam model which, for mu>0 and
universal boundary conditions, succeeds to yield experimentally acceptable
b-quark masses by moderately violating Yukawa unification. It is known that
this model can lead to new shifted or new smooth hybrid inflation. We show that
a successful two-stage inflationary scenario can be realized within this model
based only on renormalizable superpotential interactions. The cosmological
scales exit the horizon during the first stage of inflation, which is of the
standard hybrid type and takes place along the trivial flat direction with the
inflaton driven by radiative corrections. Spectral indices compatible with the
recent data can be achieved in global supersymmetry or minimal supergravity by
restricting the number of e-foldings of our present horizon during the first
inflationary stage. The additional e-foldings needed for solving the horizon
and flatness problems are naturally provided by a second stage of inflation,
which occurs mainly along the built-in new smooth hybrid inflationary path
appearing right after the destabilization of the trivial flat direction at its
critical point. Monopoles are formed at the end of the first stage of inflation
and are, subsequently, diluted by the second stage of inflation to become
utterly negligible in the present universe for almost all (for all) the allowed
values of the parameters in the case of global supersymmetry (minimal
supergravity).Comment: 11 pages including 2 figures, uses Revtex, version to appear in Phys.
Rev.
Initial Conditions for Supersymmetric Inflation
We perform a numerical investigation of the fields evolution in the
supersymmetric inflationary model based on radiative corrections. Supergravity
corrections are also included. We find that, out of all the examined initial
data, only about 10% give an adequate amount of inflation and can be considered
as ''natural''. Moreover, these successful initial conditions appear scattered
and more or less isolated.Comment: 15 pages RevTeX 4 eps figure
Bulk and surface magnetoinductive breathers in binary metamaterials
We study theoretically the existence of bulk and surface discrete breathers
in a one-dimensional magnetic metamaterial comprised of a periodic binary array
of split-ring resonators. The two types of resonators differ in the size of
their slits and this leads to different resonant frequencies. In the framework
of the rotating-wave approximation (RWA) we construct several types of breather
excitations for both the energy-conserved and the dissipative-driven systems by
continuation of trivial breather solutions from the anticontinuous limit to
finite couplings. Numerically-exact computations that integrate the full model
equations confirm the quality of the RWA results. Moreover, it is demonstrated
that discrete breathers can spontaneously appear in the dissipative-driven
system as a results of a fundamental instability.Comment: 10 pages, 16 figure
Vimentin downregulation is an inherent feature of murine erythropoiesis and occurs independently of lineage
In mammalian erythropoiesis, the mature cells of the primitive lineage remain nucleated while those of the definitive lineage are anuclear. One of the molecular and structural changes that precedes enucleation in cells of the definitive lineage is the cessation in the expression of the gene for the intermediate filament (IF) protein vimentin and the removal of all vimentin filaments from the cytoplasm. We show here that in immature primitive cells vimentin is synthesized and forms a cytoplasmic network of IFs. As differentiation proceeds in vivo, vimentin gene expression is downregulated in these cells; this is accompanied by the loss of vimentin filaments from the cytoplasm. This loss temporally coincides with the nucleus becoming freely mobile within the cytoplasm, suggesting that, while IF removal is not directly linked to the physical process of enucleation, it may be a prerequisite for the initiation of nuclear mobility in both lineages. These changes are also observed in early primitive cells cultured in vitro, suggesting that they constitute an intrinsic part of the murine erythroid differentiation program independent of lineage and hematopoietic microenvironment
Phosphorylation of Subunit Proteins of Intermediate Filaments from Chicken Muscle and Nonmuscle Cells
The phosphorylation of the subunit proteins of intermediate (10-nm) filaments has been investigated in chicken muscle and nonmuscle cells by using a two-dimensional gel electrophoresis system. Desmin, the 50,000-dalton subunit protein of the intermediate filaments of muscle, had previously been shown to exist as two major isoelectric variants--alpha and ß --in smooth, skeletal, and cardiac chicken muscle. Incubation of skeletal and smooth muscle tissue with 32PO4{}3- reveals that the acidic variant, alpha -desmin, and three other desmin variants are phosphorylated in vivo and in vitro. Under the same conditions, minor components of alpha - and ß -tropomyosin from skeletal muscle, but not smooth muscle, are also phosphorylated. Both the phosphorylated desmin variants and the nonphosphorylated ß -desmin variant remain insoluble under conditions that solubilize actin and myosin filaments, but leave Z-discs and intermediate filaments insoluble. Primary cultures of embryonic chicken muscle labeled with 32PO4{}3- possess, in addition to the desmin variants described above, a major nonphosphorylated and multiple phosphorylated variants of the 52,000-dalton, fibroblast-type intermediate filament protein (IFP). Filamentous cytoskeletons, prepared from primary myogenic cultures by Triton X-100 extraction, contain actin and all of the phosphorylated and nonphosphorylated variants of both desmin and the IFP. Similarly, these proteins are the major components of the caps of aggregated 10-nm filaments isolated from the same cell cultures previously exposed to Colcemid. These results demonstrate that a nonphosphorylated and several phosphorylated variants of desmin and IFP are present in assembled structures in muscle and nonmuscle cells
Nonlinear magnetoinductive transmission lines
Power transmission in one-dimensional nonlinear magnetic metamaterials driven
at one end is investigated numerically and analytically in a wide frequency
range. The nonlinear magnetic metamaterials are composed of varactor-loaded
split-ring resonators which are coupled magnetically through their mutual
inductances, forming thus a magnetoiductive transmission line. In the linear
limit, significant power transmission along the array only appears for
frequencies inside the linear magnetoinductive wave band. We present
analytical, closed form solutions for the magnetoinductive waves transmitting
the power in this regime, and their discrete frequency dispersion. When
nonlinearity is important, more frequency bands with significant power
transmission along the array may appear. In the equivalent circuit picture, the
nonlinear magnetoiductive transmission line driven at one end by a relatively
weak electromotive force, can be modeled by coupled
resistive-inductive-capacitive (RLC) circuits with voltage-dependent
capacitance. Extended numerical simulations reveal that power transmission
along the array is also possible in other than the linear frequency bands,
which are located close to the nonlinear resonances of a single nonlinear RLC
circuit. Moreover, the effectiveness of power transmission for driving
frequencies in the nonlinear bands is comparable to that in the linear band.
Power transmission in the nonlinear bands occurs through the linear modes of
the system, and it is closely related to the instability of a mode that is
localized at the driven site.Comment: 11 pages, 11 figures, submitted to International Journal of
Bifurcation and Chao
Control of erythroid differentiation: asynchronous expression of the anion transporter and the peripheral components of the membrane skeleton in AEV- and S13-transformed cells
Chicken erythroblasts transformed with avian erythroblastosis virus or S13 virus provide suitable model systems with which to analyze the maturation of immature erythroblasts into erythrocytes. The transformed cells are blocked in differentiation at around the colony-forming unit- erythroid stage of development but can be induced to differentiate in vitro. Analysis of the expression and assembly of components of the membrane skeleton indicates that these cells simultaneously synthesize alpha-spectrin, beta-spectrin, ankyrin, and protein 4.1 at levels that are comparable to those of mature erythroblasts. However, they do not express any detectable amounts of anion transporter. The peripheral membrane skeleton components assemble transiently and are subsequently rapidly catabolized, resulting in 20-40-fold lower steady-state levels than are found in maturing erythrocytes. Upon spontaneous or chemically induced terminal differentiation of these cells expression of the anion transporter is initiated with a concommitant increase in the steady- state levels of the peripheral membrane-skeletal components. These results suggest that during erythropoiesis, expression of the peripheral components of the membrane skeleton is initiated earlier than that of the anion transporter. Furthermore, they point a key role for the anion transporter in conferring long-term stability to the assembled erythroid membrane skeleton during terminal differentiation
- …