783 research outputs found

    Flavor Changing Scalar Interactions

    Full text link
    The smallness of fermion masses and mixing angles has recently been been attributed to approximate global U(1)U(1) symmetries, one for each fermion type. The parameters associated with these symmetry breakings are estimated here directly from observed masses and mixing angles. It turns out that although flavor changing reaction rates may be acceptably small in electroweak theories with several scalar doublets without imposing any special symmetries on the scalars themselves, such theories generically yield too much CP violation in the neutral kaon mass matrix. Hence in these theories CP must also be a good approximate symmetry. Such models provide an alternative mechanism for CP violation and have various interesting phenomenological features.Comment: 18 pages. UTTG-22-92; LBL 33016; UCB 92/3

    An alternative NMSSM phenomenology with manifest perturbative unification

    Get PDF
    Can supersymmetric models with a moderate stop mass be made consistent with the negative Higgs boson searches at LEP, while keeping perturbative unification manifest? The NMSSM achieves this rather easily, but only if extra matter multiplets filling complete SU(5) representations are present at intermediate energies. As a concrete example which makes use of this feature, we give an analytic description of the phenomenology of a constrained NMSSM close to a Peccei-Quinn symmetry point. The related pseudo-Goldstone boson appears in decays of the Higgs bosons and possibly of the lightest neutralino, and itself decays into (b anti-b) and (tau anti-tau).Comment: 19 pages, 13 figures; v2: possibility of pseudo-Goldstone below 2m_b threshold added, version published by JHE

    A mechanism for morphogen-controlled domain growth

    Get PDF
    Many developmental systems are organised via the action of graded distributions of morphogens. In the Drosophila wing disc, for example, recent experimental evidence has shown that graded expression of the morphogen Dpp controls cell proliferation and hence disc growth. Our goal is to explore a simple model for regulation of wing growth via the Dpp gradient: we use a system of reaction-diffusion equations to model the dynamics of Dpp and its receptor Tkv, with advection arising as a result of the flow generated by cell proliferation. We analyse the model both numerically and analytically, showing that uniform domain growth across the disc produces an exponentially growing wing disc

    Effect of Angiogenesis-Related Cytokines on Rotator Cuff Disease: The Search for Sensitive Biomarkers of Early Tendon Degeneration

    Get PDF
    Background Hallmarks of the pathogenesis of rotator cuff disease (RCD) include an abnormal immune response, angiogenesis, and altered variables of vascularity. Degenerative changes enhance production of pro-inflammatory, anti-inflammatory, and vascular angiogenesis-related cytokines (ARC) that play a pivotal role in the immune response to arthroscopic surgery and participate in the pathogenesis of RCD. The purpose of this study was to evaluate the ARC profile, ie, interleukin (IL): IL-1β, IL-6, IL-8, IL-10, vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and angiogenin (ANG), in human peripheral blood serum and correlate this with early degenerative changes in patients with RCD. Methods Blood specimens were obtained from 200 patients with RCD and 200 patients seen in the orthopedic clinic for nonrotator cuff disorders. Angiogenesis imaging assays was performed using power Doppler ultrasound to evaluate variables of vascularity in the rotator cuff tendons. Expression of ARC was measured by commercial Bio-Plex Precision Pro Human Cytokine Assays. Results Baseline concentrations of IL-1β, IL-8, and VEGF was significantly higher in RCD patients than in controls. Significantly higher serum VEGF levels were found in 85% of patients with RCD, and correlated with advanced stage of disease (r = 0.75; P < 0.0005), average microvascular density (r = 0.68, P < 0.005), and visual analog score (r = 0.75, P < 0.0002) in RCD patients. ANG and IL-10 levels were significantly lower in RCD patients versus controls. IL-1β and ANG levels were significantly correlated with degenerative tendon grade in RCD patients. No difference in IL-6 and bFGF levels was observed between RCD patients and controls. Patients with degenerative changes had markedly lower ANG levels compared with controls. Power Doppler ultrasound showed high blood vessel density in patients with tendon rupture. Conclusion The pathogenesis of RCD is associated with an imbalance between pro-inflammatory, anti-inflammatory, and vascular ARC

    The clustering of ultra-high energy cosmic rays and their sources

    Full text link
    The sky distribution of cosmic rays with energies above the 'GZK cutoff' holds important clues to their origin. The AGASA data, although consistent with isotropy, shows evidence for small-angle clustering, and it has been argued that such clusters are aligned with BL Lacertae objects, implicating these as sources. It has also been suggested that clusters can arise if the cosmic rays come from the decays of very massive relic particles in the Galactic halo, due to the expected clumping of cold dark matter. We examine these claims and show that both are in fact not justified.Comment: 13 pages, 8 figures, version in press at Phys. Rev.

    Design, Commissioning and Performance of the PIBETA Detector at PSI

    Full text link
    We describe the design, construction and performance of the PIBETA detector built for the precise measurement of the branching ratio of pion beta decay, pi+ -> pi0 e+ nu, at the Paul Scherrer Institute. The central part of the detector is a 240-module spherical pure CsI calorimeter covering 3*pi sr solid angle. The calorimeter is supplemented with an active collimator/beam degrader system, an active segmented plastic target, a pair of low-mass cylindrical wire chambers and a 20-element cylindrical plastic scintillator hodoscope. The whole detector system is housed inside a temperature-controlled lead brick enclosure which in turn is lined with cosmic muon plastic veto counters. Commissioning and calibration data were taken during two three-month beam periods in 1999/2000 with pi+ stopping rates between 1.3*E3 pi+/s and 1.3*E6 pi+/s. We examine the timing, energy and angular detector resolution for photons, positrons and protons in the energy range of 5-150 MeV, as well as the response of the detector to cosmic muons. We illustrate the detector signatures for the assorted rare pion and muon decays and their associated backgrounds.Comment: 117 pages, 48 Postscript figures, 5 tables, Elsevier LaTeX, submitted to Nucl. Instrum. Meth.

    Engineering Privacy in Public: Confounding Face Recognition

    Get PDF
    The objective of DARPA’s Human ID at a Distance (HID) program is to develop automated biometric identification technologies to detect, recognize and identify humans at great distances. While nominally intended for security applications, if deployed widely, such technologies could become an enormous privacy threat, making practical the automatic surveillance of individuals on a grand scale. Face recognition, as the HID technology most rapidly approaching maturity, deserves immediate research attention in order to understand its strengths and limitations, with an objective of reliably foiling it when it is used inappropriately. This paper is a status report for a research program designed to achieve this objective within a larger goal of similarly defeating all HID technologies

    Relic neutrino masses and the highest energy cosmic rays

    Get PDF
    We consider the possibility that a large fraction of the ultrahigh energy cosmic rays are decay products of Z bosons which were produced in the scattering of ultrahigh energy cosmic neutrinos on cosmological relic neutrinos. We compare the observed ultrahigh energy cosmic ray spectrum with the one predicted in the above Z-burst scenario and determine the required mass of the heaviest relic neutrino as well as the necessary ultrahigh energy cosmic neutrino flux via a maximum likelihood analysis. We show that the value of the neutrino mass obtained in this way is fairly robust against variations in presently unknown quantities, like the amount of neutrino clustering, the universal radio background, and the extragalactic magnetic field, within their anticipated uncertainties. Much stronger systematics arises from different possible assumptions about the diffuse background of ordinary cosmic rays from unresolved astrophysical sources. In the most plausible case that these ordinary cosmic rays are protons of extragalactic origin, one is lead to a required neutrino mass in the range 0.08 eV - 1.3 eV at the 68 % confidence level. This range narrows down considerably if a particular universal radio background is assumed, e.g. to 0.08 eV - 0.40 eV for a large one. The required flux of ultrahigh energy cosmic neutrinos near the resonant energy should be detected in the near future by AMANDA, RICE, and the Pierre Auger Observatory, otherwise the Z-burst scenario will be ruled out.Comment: 19 pages, 22 figures, REVTeX
    corecore