483 research outputs found

    L.R. Hesler Award (2014)

    Get PDF

    Nucleosynthesis: Stellar and Solar Abundances and Atomic Data

    Get PDF
    Abundance observations indicate the presence of often surprisingly large amounts of neutron capture (i.e., s- and r-process) elements in old Galactic halo and globular cluster stars. These observations provide insight into the nature of the earliest generations of stars in the Galaxy -- the progenitors of the halo stars -- responsible for neutron-capture synthesis. Comparisons of abundance trends can be used to understand the chemical evolution of the Galaxy and the nature of heavy element nucleosynthesis. In addition age determinations, based upon long-lived radioactive nuclei abundances, can now be obtained. These stellar abundance determinations depend critically upon atomic data. Improved laboratory transition probabilities have been recently obtained for a number of elements. These new gf values have been used to greatly refine the abundances of neutron-capture elemental abundances in the solar photosphere and in very metal-poor Galactic halo stars. The newly determined stellar abundances are surprisingly consistent with a (relative) Solar System r-process pattern, and are also consistent with abundance predictions expected from such neutron-capture nucleosynthesis.Comment: 8 pages, 2 figures, 1 table. To appear in the Proceedings of the NASA Laboratory Astrophysics Workshop in Las Vegas, NV (February 2006

    Europium, Samarium, and Neodymium Isotopic Fractions in Metal-Poor Stars

    Get PDF
    We have derived isotopic fractions of europium, samarium, and neodymium in two metal-poor giants with differing neutron-capture nucleosynthetic histories. These isotopic fractions were measured from new high resolution (R ~ 120,000), high signal-to-noise (S/N ~ 160-1000) spectra obtained with the 2dCoude spectrograph of McDonald Observatory's 2.7m Smith telescope. Synthetic spectra were generated using recent high-precision laboratory measurements of hyperfine and isotopic subcomponents of several transitions of these elements and matched quantitatively to the observed spectra. We interpret our isotopic fractions by the nucleosynthesis predictions of the stellar model, which reproduces s-process nucleosynthesis from the physical conditions expected in low-mass, thermally-pulsing stars on the AGB, and the classical method, which approximates s-process nucleosynthesis by a steady neutron flux impinging upon Fe-peak seed nuclei. Our Eu isotopic fraction in HD 175305 is consistent with an r-process origin by the classical method and is consistent with either an r- or an s-process origin by the stellar model. Our Sm isotopic fraction in HD 175305 suggests a predominantly r-process origin, and our Sm isotopic fraction in HD 196944 is consistent with an s-process origin. The Nd isotopic fractions, while consistent with either r-process or s-process origins, have very little ability to distinguish between any physical values for the isotopic fraction in either star. This study for the first time extends the n-capture origin of multiple rare earths in metal-poor stars from elemental abundances to the isotopic level, strengthening the r-process interpretation for HD 175305 and the s-process interpretation for HD196944.Comment: 40 pages, 16 figures. Accepted for publication in ApJ. Full versions of tables 4 and 5 are available from the first author upon reques

    Evidence of Multiple r-Process Sites in the Early Galaxy: New Observations of CS 22892-052

    Full text link
    First results are reported of a new abundance study of neutron-capture elements in the ultra-metal-poor (UMP; [Fe/H] = -3.1) halo field giant star CS 22892-052. Using new high resolution, high signal-to-noise spectra, abundances of more than 30 neutron-capture elements (Z>30) have been determined. Six elements in the 40<Z<56 domain (Nb, Ru, Rh, Pd, Ag and Cd) have been detected for the first time in a UMP star. Abundances are also derived for three of the heaviest stable elements (Os, Ir, and Pb). A second transition of thorium, Th{4086}, confirms the abundance deduced from the standard Th{4019} line, and an upper limit to the abundance of uranium is established from the absence of the U{3859} line. As found in previous studies, the abundances of the heavier (Z>=56) stable neutron-capture elements in CS 22892-052 match well the scaled solar system r-process abundance distribution. From the observed Th abundance, an average age of ~= 16 +/- 4 Gyr is derived for cs22892-052, consistent with the lower age limit of ~= 11 Gyr derived from the upper limit on the U abundance. The concordance of scaled solar r-process and CS 22892-052 abundances breaks down for the lighter neutron-capture elements, supporting previous suggestions that different r-process production sites are responsible for lighter and heavier neutron-capture elements.Comment: To be published in the Astrophysical Journal Letter
    corecore