39 research outputs found

    Disease Ontology: improving and unifying disease annotations across species.

    Get PDF
    Model organisms are vital to uncovering the mechanisms of human disease and developing new therapeutic tools. Researchers collecting and integrating relevant model organism and/or human data often apply disparate terminologies (vocabularies and ontologies), making comparisons and inferences difficult. A unified disease ontology is required that connects data annotated using diverse disease terminologies, and in which the terminology relationships are continuously maintained. The Mouse Genome Database (MGD, http://www.informatics.jax.org), Rat Genome Database (RGD, http://rgd.mcw.edu) and Disease Ontology (DO, http://www.disease-ontology.org) projects are collaborating to augment DO, aligning and incorporating disease terms used by MGD and RGD, and improving DO as a tool for unifying disease annotations across species. Coordinated assessment of MGD\u27s and RGD\u27s disease term annotations identified new terms that enhance DO\u27s representation of human diseases. Expansion of DO term content and cross-references to clinical vocabularies (e.g. OMIM, ORDO, MeSH) has enriched the DO\u27s domain coverage and utility for annotating many types of data generated from experimental and clinical investigations. The extension of anatomy-based DO classification structure of disease improves accessibility of terms and facilitates application of DO for computational research. A consistent representation of disease associations across data types from cellular to whole organism, generated from clinical and model organism studies, will promote the integration, mining and comparative analysis of these data. The coordinated enrichment of the DO and adoption of DO by MGD and RGD demonstrates DO\u27s usability across human data, MGD, RGD and the rest of the model organism database community. Dis Model Mech 2018 Mar 12;11(3):dmm032839

    BC4GO: a full-text corpus for the BioCreative IV GO task

    Get PDF
    Gene function curation via Gene Ontology (GO) annotation is a common task among Model Organism Database groups. Owing to its manual nature, this task is considered one of the bottlenecks in literature curation. There have been many previous attempts at automatic identification of GO terms and supporting information from full text. However, few systems have delivered an accuracy that is comparable with humans. One recognized challenge in developing such systems is the lack of marked sentence-level evidence text that provides the basis for making GO annotations. We aim to create a corpus that includes the GO evidence text along with the three core elements of GO annotations: (i) a gene or gene product, (ii) a GO term and (iii) a GO evidence code. To ensure our results are consistent with real-life GO data, we recruited eight professional GO curators and asked them to follow their routine GO annotation protocols. Our annotators marked up more than 5000 text passages in 200 articles for 1356 distinct GO terms. For evidence sentence selection, the inter-annotator agreement (IAA) results are 9.3% (strict) and 42.7% (relaxed) in F1-measures. For GO term selection, the IAAs are 47% (strict) and 62.9% (hierarchical). Our corpus analysis further shows that abstracts contain ∌10% of relevant evidence sentences and 30% distinct GO terms, while the Results/Experiment section has nearly 60% relevant sentences and >70% GO terms. Further, of those evidence sentences found in abstracts, less than one-third contain enough experimental detail to fulfill the three core criteria of a GO annotation. This result demonstrates the need of using full-text articles for text mining GO annotations. Through its use at the BioCreative IV GO (BC4GO) task, we expect our corpus to become a valuable resource for the BioNLP research community

    Improving Interpretation of Cardiac Phenotypes and Enhancing Discovery With Expanded Knowledge in the Gene Ontology.

    Get PDF
    BACKGROUND: A systems biology approach to cardiac physiology requires a comprehensive representation of how coordinated processes operate in the heart, as well as the ability to interpret relevant transcriptomic and proteomic experiments. The Gene Ontology (GO) Consortium provides structured, controlled vocabularies of biological terms that can be used to summarize and analyze functional knowledge for gene products. METHODS AND RESULTS: In this study, we created a computational resource to facilitate genetic studies of cardiac physiology by integrating literature curation with attention to an improved and expanded ontological representation of heart processes in the Gene Ontology. As a result, the Gene Ontology now contains terms that comprehensively describe the roles of proteins in cardiac muscle cell action potential, electrical coupling, and the transmission of the electrical impulse from the sinoatrial node to the ventricles. Evaluating the effectiveness of this approach to inform data analysis demonstrated that Gene Ontology annotations, analyzed within an expanded ontological context of heart processes, can help to identify candidate genes associated with arrhythmic disease risk loci. CONCLUSIONS: We determined that a combination of curation and ontology development for heart-specific genes and processes supports the identification and downstream analysis of genes responsible for the spread of the cardiac action potential through the heart. Annotating these genes and processes in a structured format facilitates data analysis and supports effective retrieval of gene-centric information about cardiac defects. Circ Genom Precis Med 2018 Feb; 11(2):e001813

    Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse, and rat genes and proteins

    Get PDF
    Mammalian carboxylesterase (CES or Ces) genes encode enzymes that participate in xenobiotic, drug, and lipid metabolism in the body and are members of at least five gene families. Tandem duplications have added more genes for some families, particularly for mouse and rat genomes, which has caused confusion in naming rodent Ces genes. This article describes a new nomenclature system for human, mouse, and rat carboxylesterase genes that identifies homolog gene families and allocates a unique name for each gene. The guidelines of human, mouse, and rat gene nomenclature committees were followed and “CES” (human) and “Ces” (mouse and rat) root symbols were used followed by the family number (e.g., human CES1). Where multiple genes were identified for a family or where a clash occurred with an existing gene name, a letter was added (e.g., human CES4A; mouse and rat Ces1a) that reflected gene relatedness among rodent species (e.g., mouse and rat Ces1a). Pseudogenes were named by adding “P” and a number to the human gene name (e.g., human CES1P1) or by using a new letter followed by ps for mouse and rat Ces pseudogenes (e.g., Ces2d-ps). Gene transcript isoforms were named by adding the GenBank accession ID to the gene symbol (e.g., human CES1_AB119995 or mouse Ces1e_BC019208). This nomenclature improves our understanding of human, mouse, and rat CES/Ces gene families and facilitates research into the structure, function, and evolution of these gene families. It also serves as a model for naming CES genes from other mammalian species

    RNAcentral : a hub of information for non-coding RNA sequences

    Get PDF
    RNAcentral is a comprehensive database of non-coding RNA (ncRNA) sequences, collating information on ncRNA sequences of all types from a broad range of organisms. We have recently added a new genome mapping pipeline that identifies genomic locations for ncRNA sequences in 296 species. We have also added several new types of functional annotations, such as tRNA secondary structures, Gene Ontology annotations, and miRNA-target interactions. A new quality control mechanism based on Rfam family assignments identifies potential contamination, incomplete sequences, and more. The RNAcentral database has become a vital component of many workflows in the RNA community, serving as both the primary source of sequence data for academic and commercial groups, as well as a source of stable accessions for the annotation of genomic and functional features. These examples are facilitated by an improved RNAcentral web interface, which features an updated genome browser, a new sequence feature viewer, and improved text search functionality. RNAcentral is freely available at https://rnacentral.org

    Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources.

    Get PDF
    The Human Phenotype Ontology (HPO)-a standardized vocabulary of phenotypic abnormalities associated with 7000+ diseases-is used by thousands of researchers, clinicians, informaticians and electronic health record systems around the world. Its detailed descriptions of clinical abnormalities and computable disease definitions have made HPO the de facto standard for deep phenotyping in the field of rare disease. The HPO\u27s interoperability with other ontologies has enabled it to be used to improve diagnostic accuracy by incorporating model organism data. It also plays a key role in the popular Exomiser tool, which identifies potential disease-causing variants from whole-exome or whole-genome sequencing data. Since the HPO was first introduced in 2008, its users have become both more numerous and more diverse. To meet these emerging needs, the project has added new content, language translations, mappings and computational tooling, as well as integrations with external community data. The HPO continues to collaborate with clinical adopters to improve specific areas of the ontology and extend standardized disease descriptions. The newly redesigned HPO website (www.human-phenotype-ontology.org) simplifies browsing terms and exploring clinical features, diseases, and human genes

    Overview of the interactive task in BioCreative V

    Get PDF
    Fully automated text mining (TM) systems promote efficient literature searching, retrieval, and review but are not sufficient to produce ready-to-consume curated documents. These systems are not meant to replace biocurators, but instead to assist them in one or more literature curation steps. To do so, the user interface is an important aspect that needs to be considered for tool adoption. The BioCreative Interactive task (IAT) is a track designed for exploring user-system interactions, promoting development of useful TM tools, and providing a communication channel between the biocuration and the TM communities. In BioCreative V, the IAT track followed a format similar to previous interactive tracks, where the utility and usability of TM tools, as well as the generation of use cases, have been the focal points. The proposed curation tasks are user-centric and formally evaluated by biocurators. In BioCreative V IAT, seven TM systems and 43 biocurators participated. Two levels of user participation were offered to broaden curator involvement and obtain more feedback on usability aspects. The full level participation involved training on the system, curation of a set of documents with and without TM assistance, tracking of time-on-task, and completion of a user survey. The partial level participation was designed to focus on usability aspects of the interface and not the performance per se. In this case, biocurators navigated the system by performing pre-designed tasks and then were asked whether they were able to achieve the task and the level of difficulty in completing the task. In this manuscript, we describe the development of the interactive task, from planning to execution and discuss major findings for the systems tested

    The Human Phenotype Ontology in 2017.

    Get PDF
    Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology
    corecore