3 research outputs found

    Seed priming and exogenous application of salicylic acid enhance growth and productivity of okra (Abelmoschus esculentus L.) by regulating photosynthetic attributes

    Get PDF
    Low and uneven germination is a serious problem for the successful production of okra seedlings. Priming of seeds as well as supplementation of different plant growth regulators exhibited better response in successful seedling production which eventually results in higher yield. Therefore, the present study was conducted to evaluate the effects of seed priming and exogenous application of salicylic acid (SA) on okra seed germination and plant development. The okra seeds were primed by 1 mM and 2 mM of SA for 60 minutes whereas the seeds were washed several times with distilled water for the control treatment. Similar doses of SA have been exogenously sprayed to the 12 days okra seedlings for 4 days. The results of the study revealed that seed priming with SA enhanced germination percentage (GP), increased coleoptile length and weight, shoot and root length, and seed vigor index (SVI). Similarly, exogenous application of 1 mM SA increased relative water content (RWC), contents of chlorophyll a, chlorophyll b, total chlorophyll while a higher dose of SA (2 mM) degraded the leaf pigments. Supplementation of SA altered photosynthetic attributes, net photosynthetic (Pn) and transpiration rate (Tr), stomatal conductance (Gs), and water use efficiency (WUE). Moreover, SA treatment reduced the time duration of flower bud initiation and days to first flowering and enhanced the yield per plant. The results of this study indicated that seed priming and exogenous application of SA enhanced germination and okra productivity by regulating RWC and photosynthetic attributes where 1 mM SA is more effective compared to 2 mM SA

    Crop improvement and abiotic stress tolerance promoted by moringa leaf extract

    Get PDF
    Moringa leaf extract (MLE) has been shown to promote beneficial outcomes in animals and plants. It is rich in amino acids, antioxidants, phytohormones, minerals, and many other bioactive compounds with nutritional and growth-promoting potential. Recent reports indicated that MLE improved abiotic stress tolerance in plants. Our understanding of the mechanisms underlying MLE-mediated abiotic stress tolerance remains limited. This review summarizes the existing literature on the role of MLE in promoting plant abiotic stress acclimation processes. MLE is applied to plants in a variety of ways, including foliar spray, rooting media, and seed priming. Exogenous application of MLE promoted crop plant growth, photosynthesis, and yield under both nonstress and abiotic stress conditions. MLE treatment reduced the severity of osmotic and oxidative stress in plants by regulating osmolyte accumulation, antioxidant synthesis, and secondary metabolites. MLE also improves mineral homeostasis in the presence of abiotic stress. Overall, this review describes the potential mechanisms underpinning MLE-mediated stress tolerance
    corecore