96 research outputs found
Virtual reality learning resources in building pathology
Building surveying students must be capable of analysing the condition of buildings and their components and, where this falls below an agreed standard, make recommendations for their repair. Hence university courses must provide opportunities for students to learn about the main causes of deterioration. Fieldwork exercises are essential but there are often problems locating appropriate buildings, programming visits to satisfy course timetables and complying with health and safety requirements. Whilst virtual surveys of existing buildings are not considered to be a substitute for real-life educational visits, this paper critically examines the development of a novel building pathology educational resource. Alternative technologies for creating digital panoramas are examined, prior to the development of an interactive case study, which enables students to conduct an on-line survey of a Grade 1 listed 16th Century hunting lodge. 360 degree panoramic scenes are linked with hot spots to create an interactive virtual tour of the building. The paper considers how virtual resources can be embedded within the curriculum, gauges tutor reaction to case study materials and identifies opportunities for the development of a suite of building pathology educational media-rich learning materials
Towards three-dimensional non-invasive recording of incised rock art
Ancient art cut into rock is difficult to research and manage off-site without precise three-dimensional records. Experiments with photographic modelling by the authors led to a relatively accessible and economical way of making them
Fast extraction of neuron morphologies from large-scale SBFSEM image stacks
Neuron morphology is frequently used to classify cell-types in the mammalian cortex. Apart from the shape of the soma and the axonal projections, morphological classification is largely defined by the dendrites of a neuron and their subcellular compartments, referred to as dendritic spines. The dimensions of a neuron’s dendritic compartment, including its spines, is also a major determinant of the passive and active electrical excitability of dendrites. Furthermore, the dimensions of dendritic branches and spines change during postnatal development and, possibly, following some types of neuronal activity patterns, changes depending on the activity of a neuron. Due to their small size, accurate quantitation of spine number and structure is difficult to achieve (Larkman, J Comp Neurol 306:332, 1991). Here we follow an analysis approach using high-resolution EM techniques. Serial block-face scanning electron microscopy (SBFSEM) enables automated imaging of large specimen volumes at high resolution. The large data sets generated by this technique make manual reconstruction of neuronal structure laborious. Here we present NeuroStruct, a reconstruction environment developed for fast and automated analysis of large SBFSEM data sets containing individual stained neurons using optimized algorithms for CPU and GPU hardware. NeuroStruct is based on 3D operators and integrates image information from image stacks of individual neurons filled with biocytin and stained with osmium tetroxide. The focus of the presented work is the reconstruction of dendritic branches with detailed representation of spines. NeuroStruct delivers both a 3D surface model of the reconstructed structures and a 1D geometrical model corresponding to the skeleton of the reconstructed structures. Both representations are a prerequisite for analysis of morphological characteristics and simulation signalling within a neuron that capture the influence of spines
Impact of Dendritic Size and Dendritic Topology on Burst Firing in Pyramidal Cells
Neurons display a wide range of intrinsic firing patterns. A particularly relevant pattern for neuronal signaling and synaptic plasticity is burst firing, the generation of clusters of action potentials with short interspike intervals. Besides ion-channel composition, dendritic morphology appears to be an important factor modulating firing pattern. However, the underlying mechanisms are poorly understood, and the impact of morphology on burst firing remains insufficiently known. Dendritic morphology is not fixed but can undergo significant changes in many pathological conditions. Using computational models of neocortical pyramidal cells, we here show that not only the total length of the apical dendrite but also the topological structure of its branching pattern markedly influences inter- and intraburst spike intervals and even determines whether or not a cell exhibits burst firing. We found that there is only a range of dendritic sizes that supports burst firing, and that this range is modulated by dendritic topology. Either reducing or enlarging the dendritic tree, or merely modifying its topological structure without changing total dendritic length, can transform a cell's firing pattern from bursting to tonic firing. Interestingly, the results are largely independent of whether the cells are stimulated by current injection at the soma or by synapses distributed over the dendritic tree. By means of a novel measure called mean electrotonic path length, we show that the influence of dendritic morphology on burst firing is attributable to the effect both dendritic size and dendritic topology have, not on somatic input conductance, but on the average spatial extent of the dendritic tree and the spatiotemporal dynamics of the dendritic membrane potential. Our results suggest that alterations in size or topology of pyramidal cell morphology, such as observed in Alzheimer's disease, mental retardation, epilepsy, and chronic stress, could change neuronal burst firing and thus ultimately affect information processing and cognition
The p53 Tumor Suppressor-Like Protein nvp63 Mediates Selective Germ Cell Death in the Sea Anemone Nematostella vectensis
Here we report the identification and molecular function of the p53 tumor suppressor-like protein nvp63 in a non-bilaterian animal, the starlet sea anemone Nematostella vectensis. So far, p53-like proteins had been found in bilaterians only. The evolutionary origin of p53-like proteins is highly disputed and primordial p53-like proteins are variably thought to protect somatic cells from genotoxic stress. Here we show that ultraviolet (UV) irradiation at low levels selectively induces programmed cell death in early gametes but not somatic cells of adult N. vectensis polyps. We demonstrate with RNA interference that nvp63 mediates this cell death in vivo. Nvp63 is the most archaic member of three p53-like proteins found in N. vectensis and in congruence with all known p53-like proteins, nvp63 binds to the vertebrate p53 DNA recognition sequence and activates target gene transcription in vitro. A transactivation inhibitory domain at its C-terminus with high homology to the vertebrate p63 may regulate nvp63 on a molecular level. The genotoxic stress induced and nvp63 mediated apoptosis in N. vectensis gametes reveals an evolutionary ancient germ cell protective pathway which relies on p63-like proteins and is conserved from cnidarians to vertebrates
In Vivo Assessment of Cold Adaptation in Insect Larvae by Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy
Background Temperatures below the freezing point of water and the ensuing ice crystal formation pose serious challenges to cell structure and function. Consequently, species living in seasonally cold environments have evolved a multitude of strategies to reorganize their cellular architecture and metabolism, and the underlying mechanisms are crucial to our understanding of life. In multicellular organisms, and poikilotherm animals in particular, our knowledge about these processes is almost exclusively due to invasive studies, thereby limiting the range of conclusions that can be drawn about intact living systems. Methodology Given that non-destructive techniques like 1H Magnetic Resonance (MR) imaging and spectroscopy have proven useful for in vivo investigations of a wide range of biological systems, we aimed at evaluating their potential to observe cold adaptations in living insect larvae. Specifically, we chose two cold-hardy insect species that frequently serve as cryobiological model systems–the freeze-avoiding gall moth Epiblema scudderiana and the freeze-tolerant gall fly Eurosta solidaginis. Results In vivo MR images were acquired from autumn-collected larvae at temperatures between 0°C and about -70°C and at spatial resolutions down to 27 µm. These images revealed three-dimensional (3D) larval anatomy at a level of detail currently not in reach of other in vivo techniques. Furthermore, they allowed visualization of the 3D distribution of the remaining liquid water and of the endogenous cryoprotectants at subzero temperatures, and temperature-weighted images of these distributions could be derived. Finally, individual fat body cells and their nuclei could be identified in intact frozen Eurosta larvae. Conclusions These findings suggest that high resolution MR techniques provide for interesting methodological options in comparative cryobiological investigations, especially in vivo
Multimodal population brain imaging in the UK Biobank prospective epidemiological study
Medical imaging has enormous potential for early disease prediction, but is impeded by the difficulty and expense of acquiring data sets before symptom onset. UK Biobank aims to address this problem directly by acquiring high-quality, consistently acquired imaging data from 100,000 predominantly healthy participants, with health outcomes being tracked over the coming decades. The brain imaging includes structural, diffusion and functional modalities. Along with body and cardiac imaging, genetics, lifestyle measures, biological phenotyping and health records, this imaging is expected to enable discovery of imaging markers of a broad range of diseases at their earliest stages, as well as provide unique insight into disease mechanisms. We describe UK Biobank brain imaging and present results derived from the first 5,000 participants' data release. Although this covers just 5% of the ultimate cohort, it has already yielded a rich range of associations between brain imaging and other measures collected by UK Biobank
Microstructured magnetic materials for RF flux guides in magnetic resonance imaging
Abstract: We present novel metamaterial structures based upon various planar wallpaper groups, in both hexagonal and square unit cells. An investigation of metamaterials consisting of one, two, and three unique sub-lattices with resonant frequencies in the terahertz (THz) was performed. We describe the theory, perform simulations, and conduct experiments to characterize these multiple element metamaterials. A method for using these new structures as a means for bio / chemical hazard detection, as well as electromagnetic signature control is proposed
- …