759 research outputs found

    Galactic Scale Feedback Observed in the 3C 298 Quasar Host Galaxy

    Get PDF
    We present high angular resolution multi-wavelength data of the 3C 298 radio-loud quasar host galaxy (z=1.439) taken using the W.M. Keck Observatory OSIRIS integral field spectrograph with adaptive optics, Atacama Large Millimeter/submillimeter Array (ALMA), Hubble Space Telescope (HST) WFC3, and the Very Large Array (VLA). Extended emission is detected in the rest-frame optical nebular emission lines Hβ\beta, [OIII], Hα\alpha, [NII], and [SII], as well as molecular lines CO (J=3-2) and (J=5-4). Along the path of 3C 298's relativistic jets we detect conical outflows of ionized gas with velocities up to 1700 km s−1^{-1} and outflow rate of 450-1500 M⊙_\odotyr−1^{-1}. Near the spatial center of the conical outflow, CO (J=3-2) emission shows a molecular gas disc with a total molecular mass (MH2\rm M_{H_{2}}) of 6.6±0.36×109\pm0.36\times10^{9}M⊙_{\odot}. On the molecular disc's blueshifted side we observe a molecular outflow with a rate of 2300 M⊙_\odotyr−1^{-1} and depletion time scale of 3 Myr. We detect no narrow Hα\alpha emission in the outflow regions, suggesting a limit on star formation of 0.3 M⊙_\odotyr−1^{-1}kpc−2^{-2}. Quasar driven winds are evacuating the molecular gas reservoir thereby directly impacting star formation in the host galaxy. The observed mass of the supermassive black hole is 109.37−9.5610^{9.37-9.56}M⊙_{\odot} and we determine a dynamical bulge mass of 1-1.7×1010R1.6kpc\rm\times10^{10}\frac{R}{1.6 kpc} M⊙_{\odot}. The bulge mass of 3C 298 resides 2-2.5 orders of magnitude below the expected value from the local Mbulge−MBH\rm_{bulge}-M_{BH} relationship. A second galactic disc observed in nebular emission is offset from the quasar by 9 kpc suggesting the system is an intermediate stage merger. These results show that galactic scale negative feedback is occurring early in the merger phase of 3C 298, well before the coalescence of the galactic nuclei and assembly on the local relationship.Comment: 23 pages, 11 figures, 4 tables, Accepted for publication in the Astrophysical Journa

    Providing stringent star formation rate limits of z∼\sim2 QSO host galaxies at high angular resolution

    Get PDF
    We present integral field spectrograph (IFS) with laser guide star adaptive optics (LGS-AO) observations of z=2 quasi-stellar objects (QSOs) designed to resolve extended nebular line emission from the host galaxy. Our data was obtained with W. M. Keck and Gemini-North Observatories using OSIRIS and NIFS coupled with the LGS-AO systems. We have conducted a pilot survey of five QSOs, three observed with NIFS+AO and two observed with OSIRIS+AO at an average redshift of z=2.15. We demonstrate that the combination of AO and IFS provides the necessary spatial and spectral resolutions required to separate QSO emission from its host. We present our technique for generating a PSF from the broad-line region of the QSO and performing PSF subtraction of the QSO emission to detect the host galaxy. We detect Hα\alpha and [NII] for two sources, SDSS J1029+6510 and SDSS J0925+06 that have both star formation and extended narrow-line emission. Assuming that the majority of narrow-line Hα\alpha is from star formation, we infer a star formation rate for SDSS J1029+6510 of 78.4 M⊙_\odotyr−1^{-1} originating from a compact region that is kinematically offset by 290 - 350 km/s. For SDSS J0925+06 we infer a star formation rate of 29 M⊙_\odotyr−1^{-1} distributed over three clumps that are spatially offset by ∼\sim 7 kpc. The null detections on three of the QSOs are used to infer surface brightness limits and we find that at 1.4 kpc distance from the QSO that the un-reddened star formation limit is << 0.3 M⊙_\odotyr−1^{-1}kpc−2^{-2}. If we assume a typical extinction values for z=2 type-1 QSOs, the dereddened star formation rate for our null detections would be << 0.6 M⊙_\odotyr−1^{-1}kpc−2^{-2}. These IFS observations indicate that if star formation is present in the host it would have to occur diffusely with significant extinction and not in compact, clumpy regions.Comment: 17 pages, 7 figures, 7 tables, Accepted to Ap

    Hot Stars and Cool Clouds: The Photodissociation Region M16

    Get PDF
    We present high-resolution spectroscopy and images of a photodissociation region (PDR) in M16 obtained during commissioning of NIRSPEC on the Keck II telescope. PDRs play a significant role in regulating star formation, and M16 offers the opportunity to examine the physical processes of a PDR in detail. We simultaneously observe both the molecular and ionized phases of the PDR and resolve the spatial and kinematic differences between them. The most prominent regions of the PDR are viewed edge-on. Fluorescent emission from nearby stars is the primary excitation source, although collisions also preferentially populate the lowest vibrational levels of H2. Variations in density-sensitive emission line ratios demonstrate that the molecular cloud is clumpy, with an average density n = 3x10^5 cm^(-3). We measure the kinetic temperature of the molecular region directly and find T_H2 = 930 K. The observed density, temperature, and UV flux imply a photoelectric heating efficiency of 4%. In the ionized region, n_i=5x10^3 cm^(-3) and T_HII = 9500 K. In the brightest regions of the PDR, the recombination line widths include a non-thermal component, which we attribute to viewing geometry.Comment: 5 pages including 2 Postscript figures. To appear in ApJ Letters, April 200

    Infrared Spectroscopy of GX 1+4/V2116 Oph: Evidence for a Fast Red Giant Wind?

    Get PDF
    We present infrared spectroscopy of the low-mass X-ray binary GX 1+4/V2116 Oph. This symbiotic binary consists of a 2-min accretion-powered pulsar and an M5 III red giant. A strong He I 1.083 micron emission line with a pronounced P Cygni profile was observed. From the blue edge of this feature, we infer an outflow velocity of 250(50) km/s. This is an order of magnitude faster than a typical red giant wind, and we suggest that radiation from the accretion disk or the neutron star may contribute to the acceleration of the outflow. We infer a wind mass loss rate of around 10^-6 Msun/yr. Accretion from such a strong stellar wind provides a plausible alternative to Roche lobe overflow for supplying the accretion disk which powers the X-ray source. The H I Paschen beta and He I 1.083 micron lines showed no evidence for the dramatic changes previously reported in some optical lines, and no evidence for pulsations at the 2-min pulsar period.Comment: 11 pages including 2 PS figures. To appear in ApJ Letter

    Energy Relaxation at a Hot-Electron Vortex Instability

    Full text link
    At high dissipation levels, vortex motion in a superconducting film has been observed to become unstable at a certain critical vortex velocity v*. At substrate temperatures substantially below Tc, the observed behavior can be accounted for by a model in which the electrons reach an elevated temperature relative to the phonons and the substrate. Here we examine the underlying assumptions concerning energy flow and relaxation times in this model. A calculation of the rate of energy transfer from the electron gas to the lattice finds that at the instability, the electronic temperature reaches a very high value close to the critical temperature. Our calculated energy relaxation times are consistent with those deduced from the experiments. We also estimate the phonon mean free path and assess its effect on the flow of energy in the film.Comment: 8 pages, 7 figure

    The infrared imaging spectrograph (IRIS) for TMT: sensitivities and simulations

    Get PDF
    We present sensitivity estimates for point and resolved astronomical sources for the current design of the InfraRed Imaging Spectrograph (IRIS) on the future Thirty Meter Telescope (TMT). IRIS, with TMT's adaptive optics system, will achieve unprecedented point source sensitivities in the near-infrared (0.84 - 2.45 {\mu}m) when compared to systems on current 8-10m ground based telescopes. The IRIS imager, in 5 hours of total integration, will be able to perform a few percent photometry on 26 - 29 magnitude (AB) point sources in the near-infrared broadband filters (Z, Y, J, H, K). The integral field spectrograph, with a range of scales and filters, will achieve good signal-to-noise on 22 - 26 magnitude (AB) point sources with a spectral resolution of R=4,000 in 5 hours of total integration time. We also present simulated 3D IRIS data of resolved high-redshift star forming galaxies (1 < z < 5), illustrating the extraordinary potential of this instrument to probe the dynamics, assembly, and chemical abundances of galaxies in the early universe. With its finest spatial scales, IRIS will be able to study luminous, massive, high-redshift star forming galaxies (star formation rates ~ 10 - 100 M yr-1) at ~100 pc resolution. Utilizing the coarsest spatial scales, IRIS will be able to observe fainter, less massive high-redshift galaxies, with integrated star formation rates less than 1 M yr-1, yielding a factor of 3 to 10 gain in sensitivity compared to current integral field spectrographs. The combination of both fine and coarse spatial scales with the diffraction-limit of the TMT will significantly advance our understanding of early galaxy formation processes and their subsequent evolution into presentday galaxies.Comment: SPIE Astronomical Instrumentation 201

    Integral Field Spectroscopy of High-Redshift Star Forming Galaxies with Laser Guided Adaptive Optics: Evidence for Dispersion-Dominated Kinematics

    Get PDF
    We present early results from an ongoing study of the kinematic structure of star-forming galaxies at redshift z ~ 2 - 3 using integral-field spectroscopy of rest-frame optical nebular emission lines in combination with Keck laser guide star adaptive optics (LGSAO). We show kinematic maps of 3 target galaxies Q1623-BX453, Q0449-BX93, and DSF2237a-C2 located at redshifts z = 2.1820, 2.0067, and 3.3172 respectively, each of which is well-resolved with a PSF measuring approximately 0.11 - 0.15 arcsec (~ 900 - 1200 pc at z ~ 2-3) after cosmetic smoothing. Neither galaxy at z ~ 2 exhibits substantial kinematic structure on scales >~ 30 km/s; both are instead consistent with largely dispersion-dominated velocity fields with sigma ~ 80 km/s along any given line of sight into the galaxy. In contrast, DSF2237a-C2 presents a well-resolved gradient in velocity over a distance of ~ 4 kpc with peak-to-peak amplitude of 140 km/s. It is unlikely that DSF2237a-C2 represents a dynamically cold rotating disk of ionized gas as the local velocity dispersion of the galaxy (sigma = 79 km/s) is comparable to the observed shear. Using extant multi-wavelength spectroscopy and photometry we relate these kinematic data to physical properties such as stellar mass, gas fraction, star formation rate, and outflow kinematics and consider the applicability of current galaxy formation models.[Abridged]Comment: 19 pages, 10 figures (5 color); accepted for publication in ApJ. Version with full-resolution figures is available at http://www.astro.caltech.edu/~drlaw/Papers/OSIRIS_data1.pd

    The Infrared Imaging Spectrograph (IRIS) for TMT: Volume phase holographic grating performance testing and discussion

    Get PDF
    Maximizing the grating efficiency is a key goal for the first light instrument IRIS (Infrared Imaging Spectrograph) currently being designed to sample the diffraction limit of the TMT (Thirty Meter Telescope). Volume Phase Holographic (VPH) gratings have been shown to offer extremely high efficiencies that approach 100% for high line frequencies (i.e., 600 to 6000l/mm), which has been applicable for astronomical optical spectrographs. However, VPH gratings have been less exploited in the near-infrared, particularly for gratings that have lower line frequencies. Given their potential to offer high throughputs and low scattered light, VPH gratings are being explored for IRIS as a potential dispersing element in the spectrograph. Our team has procured near-infrared gratings from two separate vendors. We have two gratings with the specifications needed for IRIS current design: 1.51-1.82{\mu}m (H-band) to produce a spectral resolution of 4000 and 1.19- 1.37 {\mu}m (J-band) to produce a spectral resolution of 8000. The center wavelengths for each grating are 1.629{\mu}m and 1.27{\mu}m, and the groove densities are 177l/mm and 440l/mm for H-band R=4000 and J-band R=8000, respectively. We directly measure the efficiencies in the lab and find that the peak efficiencies of these two types of gratings are quite good with a peak efficiency of ~88% at the Bragg angle in both TM and TE modes at H-band, and 90.23% in TM mode, 79.91% in TE mode at J-band for the best vendor. We determine the drop in efficiency off the Bragg angle, with a 20-23% decrease in efficiency at H-band when 2.5 degree deviation from the Bragg angle, and 25%-28% decrease at J-band when 5{\deg} deviation from the Bragg angle.Comment: Proceedings of the SPIE, 9147-33
    • …
    corecore