1,072 research outputs found
Experimentally generating and tuning robust entanglement between photonic qubits
We generate and study the entanglement properties of novel states composed of
three polarisation-encoded photonic qubits. By varying a single experimental
parameter we can coherently move from a fully separable state to a maximally
robust W state, while at all times preserving an optimally robust, symmetric
entanglement configuration. We achieve a high fidelity with these
configurations experimentally, including the highest reported W state fidelity.Comment: lower print quality for arxiv figure
Entanglement growth in quench dynamics with variable range interactions
Studying entanglement growth in quantum dynamics provides both insight into
the underlying microscopic processes and information about the complexity of
the quantum states, which is related to the efficiency of simulations on
classical computers. Recently, experiments with trapped ions, polar molecules,
and Rydberg excitations have provided new opportunities to observe dynamics
with long-range interactions. We explore nonequilibrium coherent dynamics after
a quantum quench in such systems, identifying qualitatively different behavior
as the exponent of algebraically decaying spin-spin interactions in a
transverse Ising chain is varied. Computing the build-up of bipartite
entanglement as well as mutual information between distant spins, we identify
linear growth of entanglement entropy corresponding to propagation of
quasiparticles for shorter range interactions, with the maximum rate of growth
occurring when the Hamiltonian parameters match those for the quantum phase
transition. Counter-intuitively, the growth of bipartite entanglement for
long-range interactions is only logarithmic for most regimes, i.e.,
substantially slower than for shorter range interactions. Experiments with
trapped ions allow for the realization of this system with a tunable
interaction range, and we show that the different phenomena are robust for
finite system sizes and in the presence of noise. These results can act as a
direct guide for the generation of large-scale entanglement in such
experiments, towards a regime where the entanglement growth can render existing
classical simulations inefficient.Comment: 17 pages, 7 figure
Experimental quantum computing without entanglement
Entanglement is widely believed to lie at the heart of the advantages offered
by a quantum computer. This belief is supported by the discovery that a
noiseless (pure) state quantum computer must generate a large amount of
entanglement in order to offer any speed up over a classical computer. However,
deterministic quantum computation with one pure qubit (DQC1), which employs
noisy (mixed) states, is an efficient model that generates at most a marginal
amount of entanglement. Although this model cannot implement any arbitrary
algorithm it can efficiently solve a range of problems of significant
importance to the scientific community. Here we experimentally implement a
first-order case of a key DQC1 algorithm and explicitly characterise the
non-classical correlations generated. Our results show that while there is no
entanglement the algorithm does give rise to other non-classical correlations,
which we quantify using the quantum discord - a stronger measure of
non-classical correlations that includes entanglement as a subset. Our results
suggest that discord could replace entanglement as a necessary resource for a
quantum computational speed-up. Furthermore, DQC1 is far less resource
intensive than universal quantum computing and our implementation in a scalable
architecture highlights the model as a practical short-term goal.Comment: 5 pages, 4 figure
EIT ground-state cooling of long ion strings
Electromagnetically-induced-transparency (EIT) cooling is a ground-state
cooling technique for trapped particles. EIT offers a broader cooling range in
frequency space compared to more established methods. In this work, we
experimentally investigate EIT cooling in strings of trapped atomic ions. In
strings of up to 18 ions, we demonstrate simultaneous ground state cooling of
all radial modes in under 1 ms. This is a particularly important capability in
view of emerging quantum simulation experiments with large numbers of trapped
ions. Our analysis of the EIT cooling dynamics is based on a novel technique
enabling single-shot measurements of phonon numbers, by rapid adiabatic passage
on a vibrational sideband of a narrow transition
- …