327 research outputs found
NuSTAR Observations of Heavily Obscured Quasars at z ~ 0.5
We present NuSTAR hard X-ray observations of three Type 2 quasars at z ≈ 0.4-0.5, optically selected from the Sloan Digital Sky Survey. Although the quasars show evidence for being heavily obscured, Compton-thick systems on the basis of the 2-10 keV to [O III] luminosity ratio and multiwavelength diagnostics, their X-ray absorbing column densities (N_H) are poorly known. In this analysis, (1) we study X-ray emission at >10 keV, where X-rays from the central black hole are relatively unabsorbed, in order to better constrain N_H. (2) We further characterize the physical properties of the sources through broad-band near-UV to mid-IR spectral energy distribution analyses. One of the quasars is detected with NuSTAR at >8 keV with a no-source probability of <0.1%, and its X-ray band ratio suggests near Compton-thick absorption with N_H≳5 × 10^(23) cm^(–2). The other two quasars are undetected, and have low X-ray to mid-IR luminosity ratios in both the low-energy (2-10 keV) and high-energy (10-40 keV) X-ray regimes that are consistent with extreme, Compton-thick absorption (N_H≳10^(24) cm^(–2)). We find that for quasars at z ~ 0.5, NuSTAR provides a significant improvement compared to lower energy (<10 keV) Chandra and XMM-Newton observations alone, as higher column densities can now be directly constrained
Resolving the cosmic X-ray background with a next-generation high-energy X-ray observatory
The cosmic X-ray background (CXB), which peaks at an energy of ~30 keV, is
produced primarily by emission from accreting supermassive black holes (SMBHs).
The CXB therefore serves as a constraint on the integrated SMBH growth in the
Universe and the accretion physics and obscuration in active galactic nuclei
(AGNs). This paper gives an overview of recent progress in understanding the
high-energy (>~10 keV) X-ray emission from AGNs and the synthesis of the CXB,
with an emphasis on results from NASA's NuSTAR hard X-ray mission. We then
discuss remaining challenges and open questions regarding the nature of AGN
obscuration and AGN physics. Finally, we highlight the exciting opportunities
for a next-generation, high-resolution hard X-ray mission to achieve the
long-standing goal of resolving and characterizing the vast majority of the
accreting SMBHs that produce the CXB.Comment: Science White paper submitted to Astro2020 Decadal Survey; 5 pages, 3
figures, plus references and cover pag
The NuSTAR Serendipitous Survey: The 40-month Catalog and the Properties of the Distant High-energy X-Ray Source Population
We present the first full catalog and science results for the Nuclear Spectroscopic Telescope Array (NuSTAR) serendipitous survey. The catalog incorporates data taken during the first 40 months of NuSTAR operation, which provide ≈20 Ms of effective exposure time over 331 fields, with an areal coverage of 13 deg^2, and 497 sources detected in total over the 3–24 keV energy range. There are 276 sources with spectroscopic redshifts and classifications, largely resulting from our extensive campaign of ground-based spectroscopic follow-up. We characterize the overall sample in terms of the X-ray, optical, and infrared source properties. The sample is primarily composed of active galactic nuclei (AGNs), detected over a large range in redshift from z = 0.002 to 3.4 (median of 〈z〉= 0.56), but also includes 16 spectroscopically confirmed Galactic sources. There is a large range in X-ray flux, from log(f_(3-24 keV)/erg s^(-1) cm^(-2) ≈ -14 to −11, and in rest-frame 10–40 keV luminosity, from log(L_(10-40 keV)/erg s^(-1) ≈ 39 to 46, with a median of 44.1. Approximately 79% of the NuSTAR sources have lower-energy ( 10^(44) erg s^(−1)) to ≈80% at the lowest luminosities (L_X > 10^(43) erg s^(−1)). Our optical spectroscopic analysis finds that the observed fraction of optically obscured AGNs (i.e., the type 2 fraction) is F_(Type 2) = 53^(+14)_(-15)%, for a well-defined subset of the 8–24 keV selected sample. This is higher, albeit at a low significance level, than the type 2 fraction measured for redshift- and luminosity-matched AGNs selected by <10 keV X-ray missions
The NuSTAR Extragalactic Survey: First Direct Measurements of the Greater Than Or Similar To 10 Kev X-Ray Luminosity Function For Active Galactic Nuclei At z \u3e 0.1
We present the first direct measurements of the rest-frame 10–40 keV X-ray luminosity function (XLF) of active galactic nuclei (AGNs) based on a sample of 94 sources at 0.1 \u3c z \u3c 3, selected at 8–24 keV energies from sources in the Nuclear Spectroscopic Telescope Array (NuSTAR) extragalactic survey program. Our results are consistent with the strong evolution of the AGN population seen in prior, lower-energy studies of the XLF. However, different models of the intrinsic distribution of absorption, which are used to correct for selection biases, give significantly different predictions for the total number of sources in our sample, leading to small, systematic differences in our binned estimates of the XLF. Adopting a model with a lower intrinsic fraction of Compton-thick sources and a larger population of sources with column densities cm−2 or a model with stronger Compton reflection component (with a relative normalization of R ~ 2 at all luminosities) can bring extrapolations of the XLF from 2–10 keV into agreement with our NuSTAR sample. Ultimately, X-ray spectral analysis of the NuSTAR sources is required to break this degeneracy between the distribution of absorbing column densities and the strength of the Compton reflection component and thus refine our measurements of the XLF. Furthermore, the models that successfully describe the high-redshift population seen by NuSTAR tend to over-predict previous, high-energy measurements of the local XLF, indicating that there is evolution of the AGN population that is not fully captured by the current models
South Korea's automotive labour regime, Hyundai Motors’ global production network and trade‐based integration with the European Union
This article explores the interrelationship between global production networks(GPNs) and free trade agreements (FTAs) in the South Korean auto industry and its employment relations. It focuses on the production network of the Hyundai Motor Group (HMG) — the third biggest automobile manufacturer in the world — and the FTA between the EU and South Korea. This was the first of the EU’s ‘new generation’ FTAs, which among other things contained provisions designed to protect and promote labour standards. The article’s argument is twofold. First, that HMG’s production network and Korea’s political economy (of which HMG is a crucial part) limited the possibilities for the FTA’s labour provisions to take effect. Second, that the commercial provisions in this same FTA simultaneously eroded HMG’s domestic market and corporate profitability, leading to adverse consequences for auto workers in the more
insecure and low-paid jobs. In making this argument, the article advances a multiscalar conceptualization of the labour regime as an analytical intermediary between GPNs and FTAs. It also provides one of the first empirical studies of the EU–South Korea FTA in terms of employment relations, drawing on 105 interviews with trade unions, employer associations, automobile companies and state officials across both parties
A hard X-ray view of luminous and ultra-luminous infrared galaxies in GOALS - I. AGN obscuration along the merger sequence
The merger of two or more galaxies can enhance the inflow of material from galactic scales into the close environments of active galactic nuclei (AGNs), obscuring and feeding the supermassive black hole (SMBH). Both recent simulations and observations of AGN in mergers have confirmed that mergers are related to strong nuclear obscuration. However, it is still unclear how AGN obscuration evolves in the last phases of the merger process. We study a sample of 60 luminous and ultra-luminous IR galaxies (U/LIRGs) from the GOALS sample observed by NuSTAR. We find that the fraction of AGNs that are Compton thick (CT;N-H >= 10(24)cm(-2) ) peaks at at a late merger stage, prior to coalescence, when the nuclei have projected separations (d(sep)) of 0.4-6 kpc. A similar peak is also observed in the median N-H [[(1.6 +/- 0.5) x 10(24) cm(-2)].]. The vast majority (85(-9)(+7) per cent)) of the AGNs in the final merger stages (d(sep) less than or similar to 10 kpc) are heavily obscured (N-H = 10(23) cm(-2)), and the median N-H of the accreting SMBHs in our sample is systematically higher than that of local hard X-ray-selected AGN, regardless of the merger stage. This implies that these objects have very obscured nuclear environments, with the gas almost completely covering the AGN in late mergers. CT AGNs tend to have systematically higher absorption-corrected X-ray luminosities than less obscured sources. This could either be due to an evolutionary effect, with more obscured sources accreting more rapidly because they have more gas available in their surroundings, or to a selection bias. The latter scenario would imply that we are still missing a large fraction of heavily obscured, lower luminosity (L2-10 less than or similar to 10(43) erg s(-1)) AGNs in U/LIRGs
- …