17 research outputs found

    The CHR promoter element controls cell cycle-dependent gene transcription and binds the DREAM and MMB complexes

    Get PDF
    Cell cycle-dependent gene expression is often controlled on the transcriptional level. Genes like cyclin B, CDC2 and CDC25C are regulated by cell cycle-dependent element (CDE) and cell cycle genes homology region (CHR) promoter elements mainly through repression in G0/G1. It had been suggested that E2F4 binding to CDE sites is central to transcriptional regulation. However, some promoters are only controlled by a CHR. We identify the DREAM complex binding to the CHR of mouse and human cyclin B2 promoters in G0. Association of DREAM and cell cycle-dependent regulation is abrogated when the CHR is mutated. Although E2f4 is part of the complex, a CDE is not essential but can enhance binding of DREAM. We show that the CHR element is not only necessary for repression of gene transcription in G0/G1, but also for activation in S, G2 and M phases. In proliferating cells, the B-myb-containing MMB complex binds the CHR of both promoters independently of the CDE. Bioinformatic analyses identify many genes which contain conserved CHR elements in promoters binding the DREAM complex. With Ube2c as an example from that screen, we show that inverse CHR sites are functional promoter elements that can bind DREAM and MMB. Our findings indicate that the CHR is central to DREAM/MMB-dependent transcriptional control during the cell cycle

    Regulation of Cyclin B2 Expression and Cell Cycle G2/M Transition by Menin*

    Full text link
    Multiple endocrine neoplasia type 1 (MEN1) results from mutations in tumor suppressor gene Men1, which encodes nuclear protein menin. Menin up-regulates certain cyclin-dependent kinase inhibitors through increasing histone H3 lysine 4 (H3K4) methylation and inhibits G0/G1 to S phase transition. However, little is known as to whether menin controls G2/M-phase transition, another important cell cycle checkpoint. Here, we show that menin expression delays G2/M phase transition and reduces expression of Ccnb2 (encoding cyclin B2). Menin associates with the promoter of Ccnb2 and reduces histone H3 acetylation, a positive chromatin marker for gene transcription, at the Ccnb2 locus. Moreover, Men1 ablation leads to an increase in cyclin B2 expression, histone H3 acetylation at the Ccnb2 locus, and G2/M transition. In contrast, knockdown of cyclin B2 diminishes the number of cells at M phase and reduces cell proliferation. Furthermore, menin interferes with binding of certain positive transcriptional regulators, such as nuclear factor Y (NF-Y), E2 factors (E2Fs), and histone acetyltransferase CREB (cAMP-response element-binding protein)-binding protein (CBP) to the Ccnb2 locus. Notably, MEN1 disease-related mutations, A242V and L22R, abrogate the ability of menin to repress cyclin B2 expression and G2/M transition. Both of the mutants fail to reduce the acetylated level of the Ccnb2 locus. Together, these results suggest that menin-mediated repression of cyclin B2 is crucial for inhibiting G2/M transition and cell proliferation through a previously unrecognized molecular mechanism for menin-induced suppression of MEN1 tumorigenesis
    corecore