180 research outputs found

    Space power by laser illumination of PV arrays

    Get PDF
    There has recently been a resurgence of interest in the use of beamed power to support space exploration activities. The utility is examined of photovoltaics and problem and research areas are identified for photovoltaics in two beamed-power applications: to convert incident laser radiation to power at a remote receiving station, and as a primary power source on space based power station transmitting power to a remote user. A particular application of recent interest is to use a ground-based free electron laser as a power source for space applications. Specific applications include: night power for a moonbase by laser illumination of the moonbase solar arrays; use of a laser to provide power for satellites in medium and geosynchronous Earth orbit, and a laser powered system for an electrical propulsion orbital transfer vehicle. These and other applications are currently being investigated at NASA Lewis as part of a new program to demonstrate the feasibility of laser transmission of power for space

    Solar power for the lunar night

    Get PDF
    Providing power over the 354 hour lunar night provides a considerable challenge to solar power concepts for a moonbase. Concepts are reviewed for providing night power for a solar powered moonbase. The categories of solutions considered are electrical storage, physical storage, transmitted power, and innovative concepts. Electrical storage is the most well-developed option. Less developed electrical storage options are capacitors and superconducting inductors. Physical storage options include storage of potential energy and storage of energy in flywheels. Thermal storage has potentially high energy/weight, but problems of conduction and radiation losses during the night need to be addressed. Transmitted power considers use of microwave or laser beams to transmit power either from orbit or directly from the Earth. Finally, innovative concepts proposed include reflecting light from orbital mirrors, locating the moonbase at a lunar pole, converting reflected Earthlight, or moving the moonbase to follow the sun

    Review of thin film solar cell technology and applications for ultra-light spacecraft solar arrays

    Get PDF
    Developments in thin-film amorphous and polycrystalline photovoltaic cells are reviewed and discussed with a view to potential applications in space. Two important figures of merit are discussed: efficiency (i.e., what fraction of the incident solar energy is converted to electricity), and specific power (power to weight ratio)

    Ultra-thin, light-trapping silicon solar cells

    Get PDF
    Design concepts for ultra-thin (2 to 10 microns) high efficiency single-crystal silicon cells are discussed. Light trapping allows more light to be absorbed at a given thickness, or allows thinner cells of a given Jsc. Extremely thin cells require low surface recombination velocity at both surfaces, including the ohmic contacts. Reduction of surface recombination by growth of heterojunctions of ZnS and GaP on Si has been demonstrated. The effects of these improvements on AM0 efficiency is shown. The peak efficiency increases, and the optimum thickness decreases. Cells under 10 microns thickness can retain almost optimum power. The increase of absorptance due to light trapping is considered. This is not a problem if the light-trapping cells are sufficiently thin. Ultra-thin cells have high radiation tolerance. A 2 microns thick light-trapping cell remains over 18 percent efficient after the equivalent of 20 years in geosynchronous orbit. Including a 50 microns thick coverglass, the thin cells had specific power after irradiation over ten times higher than the baseline design

    Reactionless propulsion using tethers

    Get PDF
    An orbiting tethered satellite can propel itself by reaction against the gravitational gradient, with expenditure of energy but with no use of on-board reaction mass. Energy can be added to the orbit by pumping the tether length in the same way as pumping a swing. Examples of tether propulsion in orbit without use of reaction mass are discussed, including: (1) using tether extension to reposition a satellite in orbit without fuel expenditure by extending a mass on the end of a tether; (2) using a tether for eccentricity pumping to add energy to the orbit for boosting an orbital transfer; and (3) length modulation of a spinning tether to transfer angular momentum between the orbit and tether spin, thus allowing changes in orbital angular momentum

    Photovoltaic receivers for laser beamed power in space

    Get PDF
    There has recently been a resurgence of interest in the use of beamed power to support space exploration activities. One of the most promising beamed power concepts uses a laser beam to transmit power to a remote photovoltaic array. Large lasers can be located on cloud-free sites at one or more ground locations and illuminate solar arrays to a level sufficient to provide operating power. Issues involved in providing photovoltaic receivers for such applications are discussed

    Feasibility of solar power for Mars

    Get PDF
    NASA, through Project Pathfinder, has put in place an advanced technology program to address future needs of manned space exploration. Included in the missions under study is the establishment of outposts on the surface of Mars. The Surface Power program in Pathfinder is aimed at providing photovoltaic array technology for such an application (as well as for the lunar surface). Another important application is for unmanned precursor missions, such as the photovoltaic-power aircraft, which will scout landing sites and investigate Mars geology for a 1 to 2 year mission without landing on the surface. Effective design and utilization of solar energy depend to a large extent on adequate knowledge of solar radiation characteristics in the region of solar energy system operation. The two major climatic components needed for photovoltaic system designs are the distributions of solar insolation and ambient temperature. These distributions for the Martian climate are given at the two Viking lander locations but can also be used, to the first approximation, for other latitudes. One of the most important results is that there is a large diffuse component of the insolation, even at high optical depth, so that solar energy system operation is still possible. If the power system is to continue to generate power even on high optical opacity days, it is thus important that the photovoltaic system be designed to collect diffuse irradiance as well as direct. In absence of long term insolation and temperature data for Mars, the data presented can be used until updated data are available. The ambient temperature data are given as measured directly by the temperature sensor; the insolation data are calculated from optical depth measurements of the atmosphere

    Radiation resistance of thin-film solar cells for space photovoltaic power

    Get PDF
    Copper indium diselenide, cadmium telluride, and amorphous silicon alloy solar cells have achieved noteworthy performance and are currently being studied for space power applications. Cadmium sulfide cells had been the subject of much effort but are no longer considered for space applications. A review is presented of what is known about the radiation degradation of thin film solar cells in space. Experimental cadmium telluride and amorphous silicon alloy cells are reviewed. Damage mechanisms and radiation induced defect generation and passivation in the amorphous silicon alloy cell are discussed in detail due to the greater amount of experimental data available

    Lunar production of solar cells

    Get PDF
    The feasibility of manufacturing of solar cells on the moon for spacecraft applications is examined. Because of the much lower escape velocity, there is a great advantage in lunar manufacture of solar cells compared to Earth manufacture. Silicon is abundant on the moon, and new refining methods allow it to be reduced and purified without extensive reliance on materials unavailable on the moon. Silicon and amorphous silicon solar cells could be manufactured on the moon for use in space. Concepts for the production of a baseline amorphous silicon cell are discussed, and specific power levels are calculated for cells designed for both lunar and Earth manufacture

    Effect of inert propellant injection on Mars ascent vehicle performance

    Get PDF
    A Mars ascent vehicle is limited in performance by the propellant which can be brought from Earth. In some cases the vehicle performance can be improved by injecting inert gas into the engine, if the inert gas is available as an in-situ resource and does not have to be brought from Earth. Carbon dioxide, nitrogen, and argon are constituents of the Martian atmosphere which could be separated by compressing the atmosphere, without any chemical processing step. The effect of inert gas injection on rocket engine performance was analyzed with a numerical combustion code that calculated chemical equilibrium for engines of varying combustion chamber pressure, expansion ratio, oxidizer/fuel ratio, and inert injection fraction. Results of this analysis were applied to several candidate missions to determine how the required mass of return propellant needed in low Earth orbit could be decreased using inert propellant injection
    corecore