83 research outputs found

    A prognostic neural epigenetic signature in high-grade glioma

    Get PDF
    Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is limited. We present an epigenetically defined neural signature of glioblastoma that independently predicts patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals a high abundance of malignant stemcell-like cells in high-neural glioblastoma, primarily of the neural lineage. These cells are further classified as neural-progenitor-cell-like, astrocyte-like and oligodendrocyte-progenitor-like, alongside oligodendrocytes and excitatory neurons. In line with these findings, high-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature is associated with decreased overall and progression-free survival. High-neural tumors also exhibit increased functional connectivity in magnetencephalography and resting-state magnet resonance imaging and can be detected via DNA analytes and brain-derived neurotrophic factor in patients' plasma. The prognostic importance of the neural signature was further validated in patients diagnosed with diffuse midline glioma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant. High-neural gliomas likely require a maximized surgical resection approach for improved outcomes

    Highlights of the inaugural ten - the launch of Neuro-Oncology Advances.

    Get PDF
    peer reviewedOncolytic viral-based therapies are gaining increasing attention as a promising therapeutic approach for high-grade gliomas. Converging evidence suggests the possibility of an anti-tumoral immune response that is responsible for tumor eradication, leaving room for immune activation as a synergistic treatment option2–5. In this issue, Rivera-Molina et al. report on the utility of the clinical-trial tested oncolytic Delta-24-RGD virus that is engineered to be armed with a positive activator of the tumor necrosis factor receptor superfamily synapsis: GITRL/GITR1. The authors demonstrate increased recruitment and activation of T-cells in tumors of mice treated with the armed oncolytic antivirus, dubbed Delta-24-GREAT, with associated improved survival in-vivo in comparison to mice treated with Delta-24-RGD alone. Histopathological examination demonstrated extensive necrosis within Delta-24-GREAT treated tissue. The results of this study highlight an opportunity to overcome the intrinsic lack of co-stimulatory molecules in cancer cells to trigger robust immune responses in high-grade gliomas. The complement of available T-cell activators may be exploited in future studies to achieve synergistic anti-neoplastic effects in glioblastoma with hopes of rapid translation of armed viruses into controlled clinical trials

    EGFR Amplification and Glioblastoma Stem-Like Cells

    Get PDF
    Glioblastoma (GBM), the most common malignant brain tumor in adults, contains a subpopulation of cells with a stem-like phenotype (GS-cells). GS-cells can be maintained in vitro using serum-free medium supplemented with epidermal growth factor, basic fibroblast growth factor-2, and heparin. However, this method does not conserve amplification of the Epidermal Growth Factor Receptor (EGFR) gene, which is present in over 50% of all newly diagnosed GBM cases. GS-cells with retained EGFR amplification could overcome the limitations of current in vitro model systems and contribute significantly to preclinical research on EGFR-targeted therapy. This review recapitulates recent methodological approaches to expand stem-like cells from GBM with different EGFR status in order to maintain EGFR-dependent intratumoral heterogeneity in vitro. Further, it will summarize the current knowledge about the impact of EGFR amplification and overexpression on the stem-like phenotype of GBM-derived GS-cells and different approaches to target the EGFR-dependent GS-cell compartment of GBM

    Neural stem cell migration toward gliomas in vitro

    No full text
    Various in vivo studies demonstrated a migration tendency of neural stem cells (NSCs) toward gliomas, making these cells a potential carrier for delivery of therapeutic genes to disseminated glioma cells. We analyzed which factors determine NSC migration and invasion in vitro. Conditioned media prepared from 10 different human glioma cell lines, as well as 13 different tumor-associated growth factors, were analyzed for their chemotactic effects on murine C17.2 NSCs. The growth factor receptor status was analyzed by reverse transcriptase–polymerase chain reaction. Invasion of NSCs into multicellular tumor spheroids generated from 10 glioma cell lines was quantified. NSCs displayed a heterogeneous migration pattern toward glioma spheroids as well as toward glioma-cell-conditioned medium. Chemotactic migration was stimulated up to fivefold by conditioned medium as compared to controls. In coculture assays, NSC invasion varied from single cell invasion into glioma spheroids to complete dissemination of NSCs into glioma spheroids of different cell lines. Among 13 different growth factors, scatter factor/hepatocyte growth factor (SF/HGF) was the most powerful chemoattractant for NSCs, inducing a 2.5-fold migration stimulation. An antibody against SF/HGF inhibited migratory stimulation induced by conditioned media. NSC migration can be stimulated by various growth factors, similar to glioma cell migration. The extent to which NSCs infiltrate three-dimensional glioma cell aggregates appears to depend on additional factors, which are likely to include cell-to-cell contacts and interaction with extracellular matrix proteins

    Enhanced Antitumorigenic Effects in Glioblastoma on Double Targeting of Pleiotrophin and Its Receptor ALK1

    Get PDF
    In adults, glioblastomas are the most lethal and most frequent malignant brain tumors, and the poor prognosis despite aggressive treatment indicates the need to establish novel targets for molecular intervention. The secreted growth factor pleiotrophin (PTN, HB-GAM, HBNF, OSF-1) shows mitogenic, chemotactic, and transforming activity. Whereas PTN expression is tightly regulated during embryogenesis and is very limited in normal adult tissues, a marked PTN up-regulation is seen in tumors including glioblastomas. Likewise, the PTN receptor anaplastic lymphoma kinase (ALK) has been shown previously to be upregulated and functionally relevant in glioblastoma. In this study, we explore the antitumorigenic effects of the simultaneous ribozyme-mediated knockdown of both receptor and ligand. Various glioblastoma cell lines are analyzed for PTN and ALK expression. Beyond the individual efficacies of several specific ribozymes against PTN or ALK, respectively, antiproliferative and proapoptotic effects of a single gene targeting approach are strongly enhanced on double knockdown of both genes in vitro. More importantly, this results in the abolishment of tumor growth in an in vivo subcutaneous tumor xenograft model. Finally, the analysis of various downstream signaling pathways by antibody arrays reveals a distinct pattern of changes in the activation of signal transduction molecules on PTN/ALK double knockdown. Beyond the already known ones, it identifies additional pathways relevant for PTN/ALK signaling. We conclude that double targeting of PTN and ALK leads to enhanced antitumorigenic effects over single knockdown approaches, which offers novel therapeutic options owing to increased efficacy also after prolonged knockdown

    CRISPR-to-Kill (C2K)–Employing the Bacterial Immune System to Kill Cancer Cells

    No full text
    CRISPR/Cas9 was described as a bacterial immune system that uses targeted introduction of DNA double-strand breaks (DSBs) to destroy invaders. We hypothesized that we can analogously employ CRISPR/Cas9 nucleases to kill cancer cells by inducing maximal numbers of DSBs in their genome and thus triggering programmed cell death. To do so, we generated CRISPR-to-kill (C2K) lentiviral particles targeting highly repetitive Short Interspersed Nuclear Element-Alu sequences. Our Alu-specific sgRNA has more than 15,000 perfectly matched target sites within the human genome. C2K-Alu-vectors selectively killed human, but not murine cell lines. More importantly, they efficiently inhibited the growth of cancer cells including patient-derived glioblastoma cell lines resistant to high-dose irradiation. Our data provide proof-of-concept for the potential of C2K as a novel treatment strategy overcoming common resistance mechanisms. In combination with tumor-targeting approaches, the C2K system might therefore represent a promising tool for cancer gene therapy
    • …
    corecore