238 research outputs found

    Strong polarization mode coupling in microresonators

    Full text link
    We observe strong modal coupling between the TE00 and TM00 modes in Si3N4 ring resonators revealed by avoided crossings of the corresponding resonances. Such couplings result in significant shifts of the resonance frequencies over a wide range around the crossing points. This leads to an effective dispersion that is one order of magnitude larger than the intrinsic dispersion and creates broad windows of anomalous dispersion. We also observe the changes to frequency comb spectra generated in Si3N4 microresonators due polarization mode and higher-order mode crossings and suggest approaches to avoid these effects. Alternatively, such polarization mode-crossings can be used as a novel tool for dispersion engineering in microresonators.Comment: Comments are very welcome (send to corresponding author

    Supercontinuum generation in dispersion engineered highly nonlinear (y=10/W/m) As2S3 chalcogenide planar waveguide

    No full text
    We demonstrate supercontinuum generation in a highly nonlinear As2S3 chalcogenide planar waveguide which is dispersion engineered to have anomalous dispersion at near-infrared wavelengths. This waveguide is 60 mm long with a cross-section of 2 μm by 870 nm, resulting in a nonlinear parameter of 10 /W/m and a dispersion of +29 ps/nm/km. Using pulses with a width of 610 fs and peak power of 68 W, we generate supercontinuum with a 30 dB bandwidth of 750 nm, in good agreement with theory

    Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals

    No full text
    We demonstrate broadband wavelength conversion of a 40 Gb/s return-to-zero signal using four-wave-mixing (FWM) in a dispersion engineered chalcogenide glass waveguide. The 6 cm long planar rib waveguide 2 μm wide was fabricated in a 0.87 μm thick film etched 350nm deep to correspond to a design where waveguide dispersion offsets the material leading to near-zero dispersion in the C-band and broadband phase matched FWM. The reduced dimensions also enhance the nonlinear coefficient to 9800 W-1km-1 at 1550 nm enabling broadband conversion in a shorter device. In this work, we demonstrate 80 nm wavelength conversions with 1.65 dB of power penalty at a bit-error rate of 10-9. Spectral measurements and simulations indicate extended broadband operation is possible
    corecore