43 research outputs found
Receptor specificity does not affect replication or virulence of the 2009 pandemic H1N1 influenza virus in mice and ferrets
Human influenza viruses predominantly bind α2,6 linked sialic acid (SA) while avian viruses bind α2,3 SA-containing complex glycans. Virulence and tissue tropism of influenza viruses have been ascribed to this binding preference. We generated 2009 pandemic H1N1 (pH1N1) viruses with either predominant α2,3 or α2,6 SA binding and evaluated these viruses in mice and ferrets. The α2,3 pH1N1 virus had similar virulence in mice and replicated to similar titers in the respiratory tract of mice and ferrets as the α2,6 and WT pH1N1 viruses. Immunohistochemical analysis determined that all viruses infected similar cell types in ferret lungs. There is increasing evidence that receptor specificity of influenza viruses is more complex than the binary model of α2,6 and α2,3 SA binding and our data suggest that influenza viruses use a wide range of SA moieties to infect host cells.National Institute of Allergy and Infectious Diseases (U.S.) (Intramural Research Program)National Institutes of Health (U.S.) (R37 GM057073-13)Singapore-MIT Alliance for Research and Technolog
Animal models and vaccines for SARS-CoV infection
We summarize findings of SARS-CoV infections in several animal models each of which support viral replication in lungs accompanied by histopathological changes and/or clinical signs of illness to varying degrees. New findings are reported on SARS-CoV replication and associated pathology in two additional strains (C57BL/6 and 129S6) of aged mice. We also provide new comparative data on viral replication and associated pathology following infection of golden Syrian hamsters with various SARS-CoV strains and report the levels of neutralizing antibody titers following these infections and the cross-protective efficacy of infection with these strains in protecting against heterologous challenge. Finally, we summarize findings of a variety of vaccine approaches and discuss the available in vitro and in vivo data addressing the potential for disease enhancement following re-infection in animals previously vaccinated against or infected with SARS-CoV
A live attenuated severe acute respiratory syndrome coronavirus is immunogenic and efficacious in Golden Syrian hamsters
The immunogenicity and protective efficacy of a live attenuated vaccine consisting of a recombinant severe acute respiratory syndrome (SARS) coronavirus lacking the E gene (rSARS-CoV-ΔE) were studied using hamsters. Hamsters immunized with rSARS-CoV-ΔE developed high serum-neutralizing antibody titers and were protected from replication of homologous (SARS-CoV Urbani) and heterologous (GD03) SARS-CoV in the upper and lower respiratory tract. rSARS-CoV-ΔE-immunized hamsters remained active following wild-type virus challenge, while mock-immunized hamsters displayed decreased activity. Despite being attenuated in replication in the respiratory tract, rSARS-CoV-ΔE is an immunogenic and efficacious vaccine in hamsters.This research was supported in part by the Intramural Research
Program of the NIH, NIAID; by NIH AID AI059136; and by the
European Community (projects DISSECT SP22-CT-2004-511060 and
Rivigene SSPE-CT-2005-022639)
Eurasian-Origin Gene Segments Contribute to the Transmissibility, Aerosol Release, and Morphology of the 2009 Pandemic H1N1 Influenza Virus
The epidemiological success of pandemic and epidemic influenza A viruses relies on the ability to transmit efficiently from person-to-person via respiratory droplets. Respiratory droplet (RD) transmission of influenza viruses requires efficient replication and release of infectious influenza particles into the air. The 2009 pandemic H1N1 (pH1N1) virus originated by reassortment of a North American triple reassortant swine (TRS) virus with a Eurasian swine virus that contributed the neuraminidase (NA) and M gene segments. Both the TRS and Eurasian swine viruses caused sporadic infections in humans, but failed to spread from person-to-person, unlike the pH1N1 virus. We evaluated the pH1N1 and its precursor viruses in a ferret model to determine the contribution of different viral gene segments on the release of influenza virus particles into the air and on the transmissibility of the pH1N1 virus. We found that the Eurasian-origin gene segments contributed to efficient RD transmission of the pH1N1 virus likely by modulating the release of influenza viral RNA-containing particles into the air. All viruses replicated well in the upper respiratory tract of infected ferrets, suggesting that factors other than viral replication are important for the release of influenza virus particles and transmission. Our studies demonstrate that the release of influenza viral RNA-containing particles into the air correlates with increased NA activity. Additionally, the pleomorphic phenotype of the pH1N1 virus is dependent upon the Eurasian-origin gene segments, suggesting a link between transmission and virus morphology. We have demonstrated that the viruses are released into exhaled air to varying degrees and a constellation of genes influences the transmissibility of the pH1N1 virus
SARS-CoV Pathogenesis Is Regulated by a STAT1 Dependent but a Type I, II and III Interferon Receptor Independent Mechanism
Severe acute respiratory syndrome coronavirus (SARS-CoV) infection often caused severe end stage lung disease and organizing phase diffuse alveolar damage, especially in the elderly. The virus-host interactions that governed development of these acute end stage lung diseases and death are unknown. To address this question, we evaluated the role of innate immune signaling in protection from human (Urbani) and a recombinant mouse adapted SARS-CoV, designated rMA15. In contrast to most models of viral pathogenesis, infection of type I, type II or type III interferon knockout mice (129 background) with either Urbani or MA15 viruses resulted in clinical disease outcomes, including transient weight loss, denuding bronchiolitis and alveolar inflammation and recovery, identical to that seen in infection of wildtype mice. This suggests that type I, II and III interferon signaling play minor roles in regulating SARS pathogenesis in mouse models. In contrast, infection of STAT1−/− mice resulted in severe disease, high virus titer, extensive pulmonary lesions and 100% mortality by day 9 and 30 post-infection with rMA15 or Urbani viruses, respectively. Non-lethal in BALB/c mice, Urbani SARS-CoV infection in STAT1−/− mice caused disseminated infection involving the liver, spleen and other tissues after day 9. These findings demonstrated that SARS-CoV pathogenesis is regulated by a STAT1 dependent but type I, II and III interferon receptor independent, mechanism. In contrast to a well documented role in innate immunity, we propose that STAT1 also protects mice via its role as an antagonist of unrestrained cell proliferation
Evaluation of Replication and Cross-Reactive Antibody Responses of H2 Subtype Influenza Viruses in Mice and Ferrets▿
H2 influenza viruses have not circulated in humans since 1968, and therefore a large segment of the population would likely be susceptible to infection should H2 influenza viruses reemerge. The development of an H2 pandemic influenza virus vaccine candidate should therefore be considered a priority in pandemic influenza preparedness planning. We selected a group of geographically and temporally diverse wild-type H2 influenza viruses and evaluated the kinetics of replication and compared the ability of these viruses to induce a broadly cross-reactive antibody response in mice and ferrets. In both mice and ferrets, A/Japan/305/1957 (H2N2), A/mallard/NY/1978 (H2N2), and A/swine/MO/2006 (H2N3) elicited the broadest cross-reactive antibody responses against heterologous H2 influenza viruses as measured by hemagglutination inhibition and microneutralization assays. These data suggested that these three viruses may be suitable candidates for development as live attenuated H2 pandemic influenza virus vaccines
Deletion of Nonstructural Proteins NS1 and NS2 from Pneumonia Virus of Mice Attenuates Viral Replication and Reduces Pulmonary Cytokine Expression and Disease▿
Pneumonia virus of mice (PVM) strain 15 causes fatal pneumonia in mice and provides a convenient model for human respiratory syncytial virus pathogenesis and immunobiology. We prepared PVM mutants lacking the genes for nonstructural proteins NS1 and/or NS2. In Vero cells, which lack type I interferon (IFN), deletion of these proteins had no effect on the efficiency of virus growth. In IFN-competent mouse embryo fibroblasts, wild-type (wt) PVM and the ΔNS1 virus grew efficiently and strongly inhibited the IFN response, whereas virus lacking NS2 was highly attenuated and induced high levels of IFN and IFN-inducible genes. In BALB/c mice, intranasal infection with wt PVM caused overt disease that began on day 6 and was lethal by day 9 postinoculation. In comparison, ΔNS1 induced transient, reduced disease, and ΔNS2 and ΔNS12 caused no disease. Thus, NS1 and NS2 are virulence factors, with NS2 being a major antagonist of the type I IFN system. The pulmonary titers of wt PVM and ΔNS1 were high on day 3 and increased further by day 6; in addition, expression of IFN and representative proinflammatory cytokines/chemokines and T lymphocyte-related cytokines was undetectable on day 3 but increased dramatically by day 6 coincident with the onset of disease. The titers of ΔNS2 and ΔNS12 were somewhat lower on day 3 and decreased further by day 6; in addition, these viruses induced a more circumscribed set of cytokines/chemokines (IFN, interleukin-6 [IL-6], and CXCL10) that were detected on day 3 and had largely subsided by day 6. Lung immunohistology revealed abundant PVM-positive pneumocytes and bronchial and bronchiolar epithelial cells in wt PVM- and ΔNS1-infected mice on day 6 compared to few PVM-positive foci with ΔNS2 and ΔNS12. These results indicate that severe PVM disease is associated with high, poorly controlled virus replication driving the expression of high levels of pulmonary IFN and a broad array of cytokines/chemokines. In contrast, in the absence of NS2, there was an early, transient innate response involving moderate levels of IFN, IL-6, and CXCL10 that restricted virus replication and prevented disease
Cellular Immune Responses to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Infection in Senescent BALB/c Mice: CD4+ T Cells Are Important in Control of SARS-CoV Infection▿
We characterized the cellular immune response to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in 12- to 14-month-old BALB/c mice, a model that mimics features of the human disease. Following intranasal administration, the virus replicated in the lungs, with peak titers on day 2 postinfection. Enhanced production of cytokines (tumor necrosis factor alpha [TNF-α] and interleukin-6 [IL-6]) and chemokines (CXCL10, CCL2, CCL3, and CCL5) correlated with migration of NK cells, macrophages, and plasmacytoid dendritic cells (pDC) into the lungs. By day 7, histopathologic evidence of pneumonitis was seen in the lungs when viral clearance occurred. At this time, a second wave of enhanced production of cytokines (TNF-α, IL-6, gamma interferon [IFN-γ], IL-2, and IL-5), chemokines (CXCL9, CXCL10, CCL2, CCL3, and CCL5), and receptors (CXCR3, CCR2, and CCR5), was detected in the lungs, associated with an influx of T lymphocytes. Depletion of CD8+ T cells at the time of infection did not affect viral replication or clearance. However, depletion of CD4+ T cells resulted in an enhanced immune-mediated interstitial pneumonitis and delayed clearance of SARS-CoV from the lungs, which was associated with reduced neutralizing antibody and cytokine production and reduced pulmonary recruitment of lymphocytes. Innate defense mechanisms are able to control SARS-CoV infection in the absence of CD4+ and CD8+ T cells and antibodies. Our findings provide new insights into the pathogenesis of SARS, demonstrating the important role of CD4+ but not CD8+ T cells in primary SARS-CoV infection in this model
Recombinant Human Metapneumovirus Lacking the Small Hydrophobic SH and/or Attachment G Glycoprotein: Deletion of G Yields a Promising Vaccine Candidate
Human metapneumovirus (HMPV) has recently been identified as a significant cause of serious respiratory tract disease in humans. In particular, the emerging information on the contribution of HMPV to pediatric respiratory tract disease suggests that it will be important to develop a vaccine against this virus for use in conjunction with those being developed for human respiratory syncytial virus and the human parainfluenza viruses. A recently described reverse genetic system (S. Biacchesi, M. H. Skiadopoulos, K. C. Tran, B. R. Murphy, P. L. Collins, and U. J. Buchholz, Virology 321:247-259, 2004) was used to generate recombinant HMPVs (rHMPVs) that lack the G gene, the SH gene, or both. The ΔSH, ΔG, and ΔSH/G deletion mutants were readily recovered and were found to replicate efficiently during multicycle growth in cell culture. Thus, the SH and G proteins are not essential for growth in cell culture. Apart from the absence of the deleted protein(s), the virions produced by the gene deletion mutants were similar by protein yield and gel electrophoresis protein profile to wild-type HMPV. When administered intranasally to hamsters, the ΔG and ΔSH/G mutants replicated in both the upper and lower respiratory tracts, showing that HMPV containing F as the sole viral surface protein is competent for replication in vivo. However, both viruses were at least 40-fold and 600-fold restricted in replication in the lower and upper respiratory tract, respectively, compared to wild-type rHMPV. They also induced high titers of HMPV-neutralizing serum antibodies and conferred complete protection against replication of wild-type HMPV challenge virus in the lungs. Surprisingly, G is dispensable for protection, and the ΔG and ΔSH/G viruses represent promising vaccine candidates. In contrast, ΔSH replicated somewhat more efficiently in hamster lungs compared to wild-type rHMPV (20-fold increase on day 5 postinfection). This indicates that SH is completely dispensable in vivo and that its deletion does not confer an attenuating effect, at least in this rodent model