44 research outputs found
Towards a framework for work package allocation for GSD
Proceeding of: Proceeding of: OTM 2011 Workshops: Confederated International Workshops and Posters: EI2N+NSF ICE, ICSP+INBAST, ISDE, ORM, OTMA, SWWS+MONET+SeDeS, and VADER 2011, Hersonissos, Crete, Greece, October 17-21, 2011Global software development is an inexorable trend in the software industry. The impact of the trend in conventional software development can be found in many of its aspects. One of them is task or work package allocation. Task allocation was traditionally driven by resource competency and availability but GSD introduces new complexities to this process including time-zones differences, costs and cultural differences. In this work a report on the construction of a framework for work-package allocation within GSD projects is presented. This framework lies on three main pillars: individual and organizational competency, organizational customization and sound assessment methods.This work is supported by the Spanish Centro para el Desarrollo
Tecnológico Industrial (CDTI) under the Eureka Project E! 6244 PROPS-Tour and
the national cooperation project SEM-IDi (IDI-20091150)
Agroforestry in the European common agricultural policy
Agroforestry is a sustainable land management system that should be more strongly promoted in Europe to ensure adequate ecosystem service provision in the old continent (Decision 529/2013) through the common agricultural policy (CAP). The promotion of the woody component in Europe can be appreciated in different sections of the CAP linked to Pillar I (direct payments and Greening) and Pillar II (rural development programs). However, agroforestry is not recognised as such in the CAP, with the exception of the Measure 8.2 of Pillar II. The lack of recognition of agroforestry practices within the different sections of the CAP reduces the impact of CAP activities by overlooking the optimum combinations that would maximise the productivity of land where agroforestry could be promoted, considering both the spatial and temporal scales
Agroforestry creates carbon sinks whilst enhancing the environment in agricultural landscapes in Europe
Agroforestry, relative to conventional agriculture, contributes significantly to carbon sequestration, increases a range of regulating ecosystem services, and enhances biodiversity. Using a transdisciplinary approach, we combined scientific and technical knowledge to evaluate nine environmental pressures in terms of ecosystem services in European farmland and assessed the carbon storage potential of suitable agroforestry systems, proposed by regional experts. First, regions with potential environmental pressures were identified with respect to soil health (soil erosion by water and wind, low soil organic carbon), water quality (water pollution by nitrates, salinization by irrigation), areas affected by climate change (rising temperature), and by underprovision in biodiversity (pollination and pest control pressures, loss of soil biodiversity). The maps were overlaid to identify areas where several pressures accumulate. In total, 94.4% of farmlands suffer from at least one environmental pressure, pastures being less affected than arable lands. Regional hotspots were located in north-western France, Denmark, Central Spain, north and south-western Italy, Greece, and eastern Romania. The 10% of the area with the highest number of accumulated pressures were defined as Priority Areas, where the implementation of agroforestry could be particularly effective. In a second step, European agroforestry experts were asked to propose agroforestry practices suitable for the Priority Areas they were familiar with, and identified 64 different systems covering a wide range of practices. These ranged from hedgerows on field boundaries to fast growing coppices or scattered single tree systems. Third, for each proposed system, the carbon storage potential was assessed based on data from the literature and the results were scaled-up to the Priority Areas. As expected, given the wide range of agroforestry practices identified, the carbon sequestration potentials ranged between 0.09 and 7.29 t C ha−1 a−1. Implementing agroforestry on the Priority Areas could lead to a sequestration of 2.1 to 63.9 million t C a−1 (7.78 and 234.85
Fate of ammonium 15N in a Norway spruce forest under long-term reduction in atmospheric N deposition
Software quality management improvement through mentoring: an exploratory study from GSD projects
Proceeding of: OTM 2011 Workshops: Confederated InternationalWorkshops and Posters: EI2N+NSF ICE, ICSP+INBAST, ISDE, ORM, OTMA, SWWS+MONET+SeDeS, and VADER 2011, Hersonissos, Crete, Greece, October 17-21, 2011Software Quality Management (SQM) is a set of processes and procedures designed to assure the quality of software artifacts along with their development process. In an environment in which software development is evolving to a globalization, SQM is seen as one of its challenges. Global Software Development is a way to develop software across nations, continents, cultures and time zones. The aim of this paper is to detect if mentoring, one of the lead personnel development tools, can improve SQM of projects developed under GSD. The results obtained in the study reveal that the influence of mentoring on SQM is just temperate
The Solling roof revisited - slow recovery from acidification observed and modeled despite a decade of "clean-rain" treatment
Soil chemistry under the Solling clean-rain roof was simulated using the dynamic multi-layer soil chemistry model SAFE, including sulfate adsorption. Soil was sampled in order to parameterize the pH and sulfate concentration dependent sulfate adsorption isotherm used in SAFE. Modeled soil solution chemistry was compared to the 14 year long time-series of monthly measurements of soil solution data at 10 and 100 cm depth. The deposition of N and S under the roof has been reduced by 68% and 53%, respectively, compared to the surrounding area. Despite this the soil solution concentrations of sulfate are still high (a median of 420 mu mol(c)/L at 100 cm depth between 2000 and 2002) and the soil base saturation low (approximately 3 % in the whole profile in 1998). Sulfate adsorption is an important process in Solling. The soil capacity to adsorb sulfate is large, the modeled adsorbed pool in 2003 down to 100 cm was 1030 kg S/ha, and the measured sulfate concentration is high, due to release of adsorbed sulfate. The addition of sulfate adsorption improved the modeled sulfate dynamics although the model still slightly underestimated the sulfate concentration at 100 cm. Model predictions show no recovery, based on the criteria of Bc/Al ratio above 1 in the rooting zone, before the year 2050, independent of future deposition cuts. (c) 2004 Elsevier Ltd. All rights reserved
Reduced groundwater recharge under short rotation coppice plantations - may agroforestry help to lessen enhanced water consumption ?
PosterShort rotation coppices (SRC) with mainly poplar and willow trees provide a high potential of energy supply and the substitution of fossil fuels. One shortcoming of SRC is a negative effect on groundwater recharge (GWR), as higher rates of transpiration and interception evaporation of poplar and willow plantations can be expected. Therefore it is very important to measure, analyse, and model the effects of SRC-plantings on the landscape water budgets, which are also main aims of the ongoing and joint research project BEST.
To analyse the effects on the water budget a poplar SRC was studied on the plot level by measuring soil hydrological quantities as well as sensitive parameters for hydrological modelling. By using these parameters within the hydrological model WaSim we were able to fit our measured soil water contents. Fig. 1 compares the corresponding annual ground water recharge of the research plot, assuming a constant soil and vegetation cover for poplar SRC as well as for winter wheat and grassland. Especially in succeeding dry years the GWR of the SRC plantation is very low or even missing, compared to winter wheat or grassland.
Agroforestry (AF) in form of e.g. an alley cropping system with strips of SRC can be seen as a compromise to balance between woody biomass production and GWR issues. However, further investigations and analyses are needed to study the effects of AF on the water budget. Interactions of trees and crops in AF are quite complex due to the differences in model sensitive parameters like leaf area index, transpiration, root distribution, root depth and effects on microclimate. A positive effect of AF alleviating the negative influence of SRC on GWR can be expected. Especially in regions with low water availability AF in an appropriate amount and design can help to provide woody biomass by not endanger water resources