964 research outputs found

    Reality-monitoring characteristics in confirmed and doubtful allegations of abuse

    Get PDF
    According to reality-monitoring theory, memories of experienced and imagined events are qualitatively different, and can be distinguished by children from the age of 3. Across three studies, a total of 119 allegations of sexual abuse by younger (aged 3-8) and older (aged 9-16) children were analyzed for developmental differences in the presence of reality-monitoring criteria, which should characterise descriptions of experienced events. Statements were deemed likely or unlikely to be descriptions of actual incidents using independent case information (e.g., medical evidence). Accounts by older children consistently contained more reality-monitoring criteria than those provided by younger children, and age differences were particularly strong when the cases were deemed doubtful (Studies 1 and 2)

    Backwater controls of avulsion location on deltas

    Get PDF
    River delta complexes are built in part through repeated river-channel avulsions, which often occur about a persistent spatial node creating delta lobes that form a fan-like morphology. Predicting the location of avulsions is poorly understood, but it is essential for wetland restoration, hazard mitigation, reservoir characterization, and delta morphodynamics. Following previous work, we show that the upstream distance from the river mouth where avulsions occur is coincident with the backwater length, i.e., the upstream extent of river flow that is affected by hydrodynamic processes in the receiving basin. To explain this observation we formulate a fluvial morphodynamic model that is coupled to an offshore spreading river plume and subject it to a range of river discharges. Results show that avulsion is less likely in the downstream portion of the backwater zone because, during high-flow events, the water surface is drawn down near the river mouth to match that of the offshore plume, resulting in river-bed scour and a reduced likelihood of overbank flow. Furthermore, during low-discharge events, flow deceleration near the upstream extent of backwater causes enhanced deposition locally and a reduced channel-fill timescale there. Both mechanisms favor preferential avulsion in the upstream part of the backwater zone. These dynamics are fundamentally due to variable river discharges and a coupled offshore river plume, with implications for predicting delta response to climate and sea level change, and fluvio-deltaic stratigraphy

    Is the critical Shields stress for incipient sediment motion dependent on channel-bed slope?

    Get PDF
    Data from laboratory flumes and natural streams show that the critical Shields stress for initial sediment motion increases with channel slope, which indicates that particles of the same size are more stable on steeper slopes. This observation is contrary to standard models that predict reduced stability with increasing slope due to the added downstream gravitational force. Processes that might explain this discrepancy are explored using a simple force-balance model, including increased drag from channel walls and bed morphology, variable friction angles, grain emergence, flow aeration, and changes to the local flow velocity and turbulent fluctuations. Surprisingly, increased drag due to changes in bed morphology does not appear to be the cause of the slope dependency because both the magnitude and trend of the critical Shields stress are similar for flume experiments and natural streams, and significant variations in bed morphology in flumes is unlikely. Instead, grain emergence and changes in local flow velocity and turbulent fluctuations seem to be responsible for the slope dependency due to the coincident increase in the ratio of bed-roughness scale to flow depth (i.e., relative roughness). A model for the local velocity within the grain-roughness layer is proposed based on a 1-D eddy viscosity with wake mixing. In addition, the magnitude of near-bed turbulent fluctuations is shown to depend on the depth-averaged flow velocity and the relative roughness. Extension of the model to mixed grain sizes indicates that the coarser fraction becomes increasingly difficult to transport on steeper slopes

    A model for fluvial bedrock incision by impacting suspended and bed load sediment

    Get PDF
    A mechanistic model is derived for the rate of fluvial erosion into bedrock by abrasion from uniform size particles that impact the bed during transport in both bed and suspended load. The erosion rate is equated to the product of the impact rate, the mass loss per particle impact, and a bed coverage term. Unlike previous models that consider only bed load, the impact rate is not assumed to tend to zero as the shear velocity approaches the threshold for suspension. Instead, a given sediment supply is distributed between the bed and suspended load by using formulas for the bed load layer height, bed load velocity, logarithmic fluid velocity profile, and Rouse sediment concentration profile. It is proposed that the impact rate scales linearly with the product of the near-bed sediment concentration and the impact velocity and that particles impact the bed because of gravitational settling and advection by turbulent eddies. Results suggest, unlike models that consider only bed load, that the erosion rate increases with increasing transport stage (for a given relative sediment supply), even for transport stages that exceed the onset of suspension. In addition, erosion can occur if the supply of sediment exceeds the bed load transport capacity because a portion of the sediment load is transported in suspension. These results have implications for predicting erosion rates and channel morphology, especially in rivers with fine sediment, steep channel-bed slopes, and large flood events

    The Effects Of Rapport-Building Style on Children’s Reports of a Staged Event

    Get PDF
    Three- to 9-year-old children (N = 144) interacted with a photographer and were interviewed about the event either a week or a month later. The informativeness and accuracy of information provided following either open-ended or direct rapport building were compared. Children in the open-ended rapport-building condition provided more accurate reports than children in the direct rapport-building condition after both short and long delays. Open-ended rapport-building led the 3- to 4-year-olds to report more errors in response to the first recall question about the event, but they went on to provide more accurate reports in the rest of the interview than counterparts in the direct rapport-building condition. These results suggest that forensic interviewers should attempt to establish rapport with children using an open-ended style

    Physicochemical properties of concentrated Martian surface waters

    Get PDF
    Understanding the processes controlling chemical sedimentation is an important step in deciphering paleoclimatic conditions from the rock records preserved on both Earth and Mars. Clear evidence for subaqueous sedimentation at Meridiani Planum, widespread saline mineral deposits in the Valles Marineris region, and the possible role of saline waters in forming recent geomorphologic features all underscore the need to understand the physical properties of highly concentrated solutions on Mars in addition to, and as a function of, their distinct chemistry. Using thermodynamic models predicting saline mineral solubility, we generate likely brine compositions ranging from bicarbonate-dominated to sulfate-dominated and predict their saline mineralogy. For each brine composition, we then estimate a number of thermal, transport, and colligative properties using established models that have been developed for highly concentrated multicomponent electrolyte solutions. The available experimental data and theoretical models that allow estimation of these physicochemical properties encompass, for the most part, much of the anticipated variation in chemistry for likely Martian brines. These estimates allow significant progress in building a detailed analysis of physical sedimentation at the ancient Martian surface and allow more accurate predictions of thermal behavior and the diffusive transport of matter through chemically distinct solutions under comparatively nonstandard conditions

    Formation of Box Canyon, Idaho, by megaflood: implications for seepage erosion on Earth and Mars

    Get PDF
    Amphitheater- headed canyons have been used as diagnostic indicators of erosion by groundwater seepage, which has important implications for landscape evolution on Earth and astrobiology on Mars. Of perhaps any canyon studied, Box Canyon, Idaho, most strongly meets the proposed morphologic criteria for groundwater sapping because it is incised into a basaltic plain with no drainage network upstream, and approximately 10 cubic meters per second of seepage emanates from its vertical headwall. However, sediment transport constraints, ^4He and ^14C dates, plunge pools, and scoured rock indicate that a megaflood (greater than 220 cubic meters per second) carved the canyon about 45,000 years ago. These results add to a growing recognition of Quaternary catastrophic flooding in the American northwest, and may imply that similar features on Mars also formed by floods rather than seepage erosion

    Unraveling bed slope from relative roughness in initial sediment motion

    Get PDF
    Understanding incipient sediment transport is crucial for predicting landscape evolution, mitigating flood hazards, and restoring riverine habitats. Observations show that the critical Shields stress increases with increasing channel bed slope, and proposed explanations for this counterintuitive finding include enhanced form drag from bed forms, particle interlocking across the channel width, and large bed sediment relative to flow depth (relative roughness). Here we use scaled flume experiments with variable channel widths, bed slopes, and particle densities to separate these effects which otherwise covary in natural streams. The critical Shields stress increased with bed slope for both natural gravel (ρ_s = 2.65 g/cm^3) and acrylic particles (ρ_s = 1.15 g/cm^3), and adjusting channel width had no significant effect. However, the lighter acrylic particles required a threefold higher critical Shields stress for mobilization relative to the natural gravel at a fixed slope, which is unexpected because particle density is accounted for directly in the definition of Shields stress. A comparison with model predictions indicates that changes in local velocity and turbulence associated with increasing relative roughness for lighter materials are responsible for increasing the critical Shields stress in our experiments. These changes lead to concurrent changes in the hydraulic resistance and a nearly constant critical stream power value at initial motion. Increased relative roughness can explain much of the observed heightened critical Shields stresses and reduced sediment transport rates in steep channels and also may bias paleohydraulic reconstructions in environments with exotic submerged densities such as iron ore, pumice, or ice clasts on Titan

    Particle friction angles in steep mountain channels

    Get PDF
    Sediment transport rates in steep mountain channels are typically an order of magnitude lower than predicted by models developed for lowland rivers. One hypothesis for this observation is that particles are more stable in mountain channels due to particle-particle interlocking or bridging across the channel width. This hypothesis has yet to be tested, however, because we lack direct measurements of particle friction angles in steep mountain channels. Here we address this data gap by directly measuring the minimum force required to dislodge sediment (pebbles to boulders) and the sediment weight in mountain channels using a handheld force gauge. At eight sites in California, with reach-averaged bed angles ranging from 0.5° to 23° and channel widths ranging from 2 m to 16 m, we show that friction angles in natural streams average 68° and are 16° larger than those typically measured in laboratory experiments, which is likely due to particle interlocking and burial. Results also show that larger grains are disproportionately more stable than predicted by existing models and that grains organized into steps are twice as stable as grains outside of steps. However, the mean particle friction angle does not vary systematically with bed slope. These results do not support systematic increases in friction angle in steeper and narrower channels to explain the observed low sediment transport rates in mountain channels. Instead, the spatial pattern and grain-size dependence of particle friction angles may indirectly lower transport rates in steep, narrow channels by stabilizing large clasts and channel-spanning steps, which act as momentum sinks due to form drag
    corecore