14,471 research outputs found
Appearance of the canine meninges in subtraction magnetic resonance images
The canine meninges are not visible as discrete structures in noncontrast magnetic resonance (MR) images, and are incompletely visualized in T1‐weighted, postgadolinium images, reportedly appearing as short, thin curvilinear segments with minimal enhancement. Subtraction imaging facilitates detection of enhancement of tissues, hence may increase the conspicuity of meninges. The aim of the present study was to describe qualitatively the appearance of canine meninges in subtraction MR images obtained using a dynamic technique. Images were reviewed of 10 consecutive dogs that had dynamic pre‐ and postgadolinium T1W imaging of the brain that was interpreted as normal, and had normal cerebrospinal fluid. Image‐anatomic correlation was facilitated by dissection and histologic examination of two canine cadavers. Meningeal enhancement was relatively inconspicuous in postgadolinium T1‐weighted images, but was clearly visible in subtraction images of all dogs. Enhancement was visible as faint, small‐rounded foci compatible with vessels seen end on within the sulci, a series of larger rounded foci compatible with vessels of variable caliber on the dorsal aspect of the cerebral cortex, and a continuous thin zone of moderate enhancement around the brain. Superimposition of color‐encoded subtraction images on pregadolinium T1‐ and T2‐weighted images facilitated localization of the origin of enhancement, which appeared to be predominantly dural, with relatively few leptomeningeal structures visible. Dynamic subtraction MR imaging should be considered for inclusion in clinical brain MR protocols because of the possibility that its use may increase sensitivity for lesions affecting the meninges
XAX: a multi-ton, multi-target detection system for dark matter, double beta decay and pp solar neutrinos
A multi-target detection system XAX, comprising concentric 10 ton targets of
136Xe and 129/131Xe, together with a geometrically similar or larger target of
liquid Ar, is described. Each is configured as a two-phase
scintillation/ionization TPC detector, enhanced by a full 4pi array of
ultra-low radioactivity Quartz Photon Intensifying Detectors (QUPIDs) replacing
the conventional photomultipliers for detection of scintillation light. It is
shown that background levels in XAX can be reduced to the level required for
dark matter particle (WIMP) mass measurement at a 10^-10 pb WIMP-nucleon cross
section, with single-event sensitivity below 10^-11 pb. The use of multiple
target elements allows for confirmation of the A^2 dependence of a coherent
cross section, and the different Xe isotopes provide information on the
spin-dependence of the dark matter interaction. The event rates observed by Xe
and Ar would modulate annually with opposite phases from each other for WIMP
mass >~100 GeV/c^2. The large target mass of 136Xe and high degree of
background reduction allow neutrinoless double beta decay to be observed with
lifetimes of 10^27-10^28 years, corresponding to the Majorana neutrino mass
range 0.01-0.1 eV, the most likely range from observed neutrino mass
differences. The use of a 136Xe-depleted 129/131Xe target will also allow
measurement of the pp solar neutrino spectrum to a precision of 1-2%.Comment: 16 pages with 17 figure
Implementing Unitarity in Perturbation Theory
Unitarity cannot be perserved order by order in ordinary perturbation theory
because the constraint UU^\dagger=\1 is nonlinear. However, the corresponding
constraint for , being , is linear so it can be
maintained in every order in a perturbative expansion of . The perturbative
expansion of may be considered as a non-abelian generalization of the
linked-cluster expansion in probability theory and in statistical mechanics,
and possesses similar advantages resulting from separating the short-range
correlations from long-range effects. This point is illustrated in two QCD
examples, in which delicate cancellations encountered in summing Feynman
diagrams of are avoided when they are calculated via the perturbative expansion
of . Applications to other problems are briefly discussed.Comment: to appear in Phys. Rev.
Stability and stabilisation of 2D discrete linear systems with multiple delays
In this paper, we study the stability and the stabilisation of 2D discrete linear systems with multiple state delays. All of the new results obtained are based on analysis of the Fornasini-Marchesini state space model with delays and the resulting conditions are given in terms of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the overall approach.published_or_final_versio
Full potential LAPW calculation of electron momentum density and related properties of Li
Electron momentum density and Compton profiles in Lithium along , and directions are calculated using Full-Potential Linear
Augmented Plane Wave basis within generalized gradient approximation. The
profiles have been corrected for correlations with Lam-Platzman formulation
using self-consistent charge density. The first and second derivatives of
Compton profiles are studied to investigate the Fermi surface breaks. Decent
agreement is observed between recent experimental and our calculated values.
Our values for the derivatives are found to be in better agreement with
experiments than earlier theoretical results. Two-photon momentum density and
one- and two-dimensional angular correlation of positron annihilation radiation
are also calculated within the same formalism and including the
electron-positron enhancement factor.Comment: 11 pages, 7 figures TO appear in Physical Review
A Horizon Ratio Bound for Inflationary Fluctuations
We demonstrate that the gravity wave background amplitude implies a robust
upper bound on the ratio: \lambda / H^{-1} < e^60, where \lambda is the proper
wavelength of fluctuations of interest and H^{-1} is the horizon at the end of
inflation. The bound holds as long as the energy density of the universe does
not drop faster than radiation subsequent to inflation. This limit implies that
the amount of expansion between the time the scales of interest leave the
horizon and the end of inflation, denoted by e^N, is also bounded from above,
by about e^60 times a factor that involves an integral over the first slow-roll
parameter. In other words, the bound on N is model dependent -- we show that
for vast classes of slow-roll models, N < 67. The quantities, \lambda / H^{-1}
or N, play an important role in determining the nature of inflationary scalar
and tensor fluctuations. We suggest ways to incorporate the above bounds when
confronting inflation models with observations. As an example, this bound
solidifies the tension between observations of cosmic microwave background
(CMB) anisotropies and chaotic inflation with a \phi^4 potential by closing the
escape hatch of large N (< 62).Comment: 4 pages, 1 figure; revised to close a loophole in the earlier version
and clarify our assumption
LMI based stability analysis and controller design for a class of 2D continuous-discrete linear systems
Differential linear repetitive processes are a distinct class of 2D continuous-discrete linear systems of both applications and systems theoretic interest. In the latter area, they arise, for example, in the analysis of both iterative learning control schemes and iterative algorithms for computing the solutions of nonlinear dynamic optimal control algorithms based on the maximum principle. Repetitive processes cannot be analysed/controlled by direct application of existing systems theory and to date there are few results on the specification and design of control schemes for them. The paper uses an LMI setting to develop the first really significant results in this problem domain.published_or_final_versio
ArcGIS Digitization of Apollo Surface Traverses
The Apollo surface activities were documented in extraordinary detail, with every action performed by the astronauts while on the surface recorded either in photo, audio, film, or by written testimony [1]. The samples and in situ measurements the astronauts collected while on the lunar surface have shaped our understanding of the geologic history of the Moon, and the earliest history and evolution of the inner Solar System. As part of an ongoing LASERfunded effort, we are digitizing and georeferencing data from astronaut traverses and spatially associating them to available, co-registered remote sensing data. Here we introduce the products produced so far for Apollo 15, 16, and 17 missions
Numerical evidence for the spin-Peierls state in the frustrated quantum antiferromagnet
We study the spin- Heisenberg antiferromagnet with an
antiferromagnetic (third nearest neighbor) interaction on a square
lattice. We numerically diagonalize this ``-'' model on clusters up
to 32-sites and search for novel ground state properties as the frustration
parameter changes. For ``larger'' we find enhancement of
incommensurate spin order, in agreement with spin-wave, large- expansions,
and other predictions. But for intermediate , the low lying excitation
energy spectrum suggests that this incommensurate order is short-range. In the
same region, the first excited state has the symmetries of the columnar dimer
(spin-Peierls) state. The columnar dimer order parameter suggests the presence
of long-range columnar dimer order. Hence, this spin-Peierls state is the best
candidate for the ground state of the - model in an intermediate
region.Comment: RevTeX file with five postscript figures uuencode
- …