224 research outputs found

    Multimodality treatment in hormone-refractory prostate cancer patients with bone metastases

    Get PDF
    We agree with the interesting points made by Koutsikos et al. They confirm the feasibility of the combined use of bone-seeking radiopharmaceuticals and bisphosphonates and highlight the potential benefit of this combined treatment. We would like to stress the importance to study multimodality treatment strategies in well-designed clinical trials. These trials should evaluate the multidimensional character of pain, as well as survival, and they should incorporate imaging modalities for response stratification ..

    Transarterial RAdioembolization versus ChemoEmbolization for the treatment of hepatocellular carcinoma (TRACE) : study protocol for a randomized controlled trial

    Get PDF
    Background: Hepatocellular carcinoma is a primary malignant tumor of the liver that accounts for an important health problem worldwide. Only 10 to 15% of hepatocellular carcinoma patients are suitable candidates for treatment with curative intent, such as hepatic resection and liver transplantation. A majority of patients have locally advanced, liver restricted disease (Barcelona Clinic Liver Cancer (BCLC) staging system intermediate stage). Transarterial loco regional treatment modalities offer palliative treatment options for these patients; transarterial chemoembolization (TACE) is the current standard treatment. During TACE, a catheter is advanced into the branches of the hepatic artery supplying the tumor, and a combination of embolic material and chemotherapeutics is delivered through the catheter directly into the tumor. Yttrium-90 radioembolization (Y-90-RE) involves the transarterial administration of minimally embolic microspheres loaded with Yttrium-90, a beta-emitting isotope, delivering selective internal radiation to the tumor. Y-90-RE is increasingly used in clinical practice for treatment of intermediate stage hepatocellular carcinoma, but its efficacy has never been prospectively compared to that of the standard treatment (TACE). In this study, we describe the protocol of a multicenter randomized controlled trial aimed at comparing the effectiveness of TACE and Y-90-RE for treatment of patients with unresectable (BCLC intermediate stage) hepatocellular carcinoma. Methods/design: In this pragmatic randomized controlled trial, 140 patients with unresectable (BCLC intermediate stage) hepatocellular carcinoma, with Eastern Cooperative Oncology Group performance status 0 to 1 and Child-Pugh A to B will be randomly assigned to either Y-90-RE or TACE with drug eluting beads. Patients assigned to Y-90-RE will first receive a diagnostic angiography, followed by the actual transarterial treatment, which can be divided into two sessions in case of bilobar disease. Patients assigned to TACE will receive a maximum of three consecutive transarterial treatment sessions. Patients will undergo structural follow-up for a timeframe of two years post treatment. Post procedural magnetic resonance imaging (MRI) will be performed at one and three months post trial entry and at three-monthly intervals thereafter for two years to assess tumor response. Primary outcome will be time to progression. Secondary outcomes will be overall survival, tumor response according to the modified RECIST criteria, toxicities/adverse events, treatment related effect on total liver function, quality of life, treatment-related costs and cost-effectiveness

    Combined use of zoledronic acid and 153Sm-EDTMP in hormone-refractory prostate cancer patients with bone metastases

    Get PDF
    Purpose: 153Sm-ethylenediaminetetramethylenephosphonic acid (EDTMP; Quadramet®) is indicated for the treatment of painful bone metastases, whereas zoledronic acid (Zometa®) is indicated for the prevention of skeletal complications. Because of the different therapeutic effects, combining the treatments may be beneficial. Both, however, accumulate in areas with increased osteoblastic activity. Possible drug interactions were investigated. Methods: Patients with hormone-refractory prostate cancer were treated with 18.5 MBq/kg 153Sm-EDTMP in weeks 1 and 3 and with 37 MBq/kg in week 15. Treatment with 4 mg zoledronic acid began in week 3 and continued every 4 weeks through week 23. In weeks 3 and 15, zoledronic acid was administered 2 days before 153Sm-EDTMP treatment. Urine was collected 48 h after injection of 153Sm-EDTMP, and whole-body images were obtained 6, 24 and 48 h post-injection. The effect of zoledronic acid on total bone uptake of 153Sm-EDTMP was measured indirectly by the cumulative activity excreted in the urine in weeks 1, 3 and 15. Biodistribution, safety, tolerability and effect on prostate-specific antigen level were also studied. Results: The urinary excretion in week 3 divided by the urinary excretion in week 1 (baseline) times 100% was mean 98.4±11.6% (median 96.2%). From week 1 to 15, after four zoledronic acid treatments, the mean ratio was 101.9±10.7% (median 101.8%). Bioequivalence could be concluded by using a two-sample t test for both perprotocol (n=13) and full-analysis sets (n=18). Toxicity was comparable to of monotherapy with 153Sm-EDTMP. Conclusion: Zoledronic acid treatment does not influence 153Sm-EDTMP skeletal uptake. Combined treatment is feasible and safe

    Current Status and Future Direction of Hepatic Radioembolisation.

    Get PDF
    Radioembolisation is a locoregional treatment modality for hepatic malignancies. It consists of several stages that are vital to its success, which include a pre-treatment angiographic simulation followed by nuclear medicine imaging, treatment activity choice, treatment procedure and post-treatment imaging. All these stages have seen much advancement over the past decade. Here we aim to provide an overview of the practice of radioembolisation, discuss the limitations of currently applied methods and explore promising developments

    Holmium-166 radioembolization for the treatment of patients with liver metastases: design of the phase I HEPAR trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intra-arterial radioembolization with yttrium-90 microspheres ( <sup>90</sup>Y-RE) is an increasingly used therapy for patients with unresectable liver malignancies. Over the last decade, radioactive holmium-166 poly(L-lactic acid) microspheres ( <sup>166</sup>Ho-PLLA-MS) have been developed as a possible alternative to <sup>90</sup>Y-RE. Next to high-energy beta-radiation, <sup>166</sup>Ho also emits gamma-radiation, which allows for imaging by gamma scintigraphy. In addition, Ho is a highly paramagnetic element and can therefore be visualized by MRI. These imaging modalities are useful for assessment of the biodistribution, and allow dosimetry through quantitative analysis of the scintigraphic and MR images. Previous studies have demonstrated the safety of <sup>166</sup>Ho-PLLA-MS radioembolization ( <sup>166</sup>Ho-RE) in animals. The aim of this phase I trial is to assess the safety and toxicity profile of <sup>166</sup>Ho-RE in patients with liver metastases.</p> <p>Methods</p> <p>The HEPAR study (Holmium Embolization Particles for Arterial Radiotherapy) is a non-randomized, open label, safety study. We aim to include 15 to 24 patients with liver metastases of any origin, who have chemotherapy-refractory disease and who are not amenable to surgical resection. Prior to treatment, in addition to the standard technetium-99m labelled macroaggregated albumin ( <sup>99m</sup>Tc-MAA) dose, a low radioactive safety dose of 60-mg <sup>166</sup>Ho-PLLA-MS will be administered. Patients are treated in 4 cohorts of 3-6 patients, according to a standard dose escalation protocol (20 Gy, 40 Gy, 60 Gy, and 80 Gy, respectively). The primary objective will be to establish the maximum tolerated radiation dose of <sup>166</sup>Ho-PLLA-MS. Secondary objectives are to assess tumour response, biodistribution, performance status, quality of life, and to compare the <sup>166</sup>Ho-PLLA-MS safety dose and the <sup>99m</sup>Tc-MAA dose distributions with respect to the ability to accurately predict microsphere distribution.</p> <p>Discussion</p> <p>This will be the first clinical study on <sup>166</sup>Ho-RE. Based on preclinical studies, it is expected that <sup>166</sup>Ho-RE has a safety and toxicity profile comparable to that of <sup>90</sup>Y-RE. The biochemical and radionuclide characteristics of <sup>166</sup>Ho-PLLA-MS that enable accurate dosimetry calculations and biodistribution assessment may however improve the overall safety of the procedure.</p> <p>Trial registration</p> <p>ClinicalTrials.gov NCT01031784</p

    Normal imaging findings after aortic valve implantation on 18F-Fluorodeoxyglucose positron emission tomography with computed tomography

    Get PDF
    Background: To determine the normal perivalvular 18F-Fluorodeoxyglucose (18F-FDG) uptake on positron emission tomography (PET) with computed tomography (CT) within one year after aortic prosthetic heart valve (PHV) implantation. Methods: Patients with uncomplicated aortic PHV implantation were prospectively included and underwent 18F-FDG PET/CT at either 5 (± 1) weeks (group 1), 12 (± 2) weeks (group 2) or 52 (± 8) weeks (group 3) after implantation. 18F-FDG uptake around the PHV was scored qualitatively (none/low/intermediate/high) and quantitatively by measuring the maximum Standardized Uptake Value (SUVmax) and target to background ratio (SUVratio). Results: In total, 37 patients (group 1: n = 12, group 2: n = 12, group 3: n = 13) (mean age 66 ± 8 years) were prospectively included. Perivalvular 18F-FDG uptake was low (8/12 (67%)) and intermediate (4/12 (33%)) in group 1, low (7/12 (58%)) and intermediate (5/12 (42%)) in group 2, and low (8/13 (62%)) and intermediate (5/13 (38%)) in group 3 (P = 0.91). SUVmax was 4.1 ± 0.7, 4.6 ± 0.9 and 3.8 ± 0.7 (mean ± SD, P = 0.08), and SUVratio was 2.0 [1.9 to 2.2], 2.0 [1.8 to 2.6], and 1.9 [1.7 to 2.0] (median [IQR], P = 0.81) for groups 1, 2, and 3, respectively. Conclusion: Non-infected aortic PHV have similar low to intermediate perivalvular 18F-FDG uptake with similar SUVmax and SUVratio at 5, 12, and 52 weeks after implantation
    corecore