304 research outputs found
Quantum Fluctuations for Gravitational Impulsive Waves
Quantum fluctuations for a massless scalar field in the background metric of
spherical impulsive gravitational waves through Minkowski and de Sitter spaces
are investigated. It is shown that there exist finite fluctuations for de
Sitter space.Comment: Submitted to Int. J. Mod. Phys.
Differential role for trehalose metabolism in salt-stressed maize
Little is known about how salt impacts primary metabolic pathways of C4 plants, particularly related to kernel development and seed set. Osmotic stress was applied to maize (Zea mays) B73 by irrigation with increasing concentrations of NaCl from the initiation of floral organs until 3 d after pollination. At silking, photosynthesis was reduced to only 2% of control plants. Salt treatment was found to reduce spikelet growth, silk growth, and kernel set. Osmotic stress resulted in higher concentrations of sucrose (Suc) and hexose sugars in leaf, cob, and kernels at silking, pollination, and 3 d after pollination. Citric acid cycle intermediates were lower in salt-treated tissues, indicating that these sugars were unavailable for use in respiration. The sugar-signaling metabolite trehalose-6-phosphate was elevated in leaf, cob, and kernels at silking as a consequence of salt treatment but decreased thereafter even as Suc levels continued to rise. Interestingly, the transcripts of trehalose pathway genes were most affected by salt treatment in leaf tissue. On the other hand, transcripts of the SUCROSE NONFERMENTING-RELATED KINASE1 (SnRK1) marker genes were most affected in reproductive tissue. Overall, both source and sink strength are reduced by salt, and the data indicate that trehalose-6-phosphate and SnRK1 may have different roles in source and sink tissues. Kernel abortion resulting from osmotic stress is not from a lack of carbohydrate reserves but from the inability to utilize these energy reserves
Tobacco peroxidase as a new reagent for amperometric biosensors
The results of testing a new enzyme, anionic tobacco peroxidase (TOP), in various amperometric biosensors are summarized. The biochemical and electrochemical properties of the enzyme are briefly characterized. As compared to the commonly used cationic peroxidase from horseradish roots, TOP exhibits a wider optimum stability pH range, higher stability to inactivation with hydrogen peroxide, and higher efficiency in direct electron-transfer processes. The enzyme immobilized by adsorption on graphite is effective in determining aminophenols and aromatic diamines under flow conditions with a detection limit of 10 nM. Upon immobilization on graphite by incorporation into a get of a redox-active polymer (crosslinked polyvinylimidazole with osmium 4,4'-dimethylbipyridinium chloride), TOP exhibited sensitivity and stability comparable to those of horseradish peroxidase and a wider linearity range. Upon immobilization on a self-assembled thiol monolayer at a gold electrode, TOP was much superior to horseradish peroxidase in the sensitivity of determining hydrogen peroxide, regardless of the charge of the monolayer. Prospects for the further use of the native enzyme and its genetically engineered unglycosylated form are considered
- âŠ