9 research outputs found
Determination of nitric oxide metabolites, nitrate and nitrite, in Anopheles culicifacies mosquito midgut and haemolymph by anion exchange high-performance liquid chromatography: plausible mechanism of refractoriness
<p>Abstract</p> <p>Background</p> <p>The diverse physiological and pathological role of nitric oxide in innate immune defenses against many intra and extracellular pathogens, have led to the development of various methods for determining nitric oxide (NO) synthesis. NO metabolites, nitrite (NO<sub>2</sub><sup>-</sup>) and nitrate (NO<sub>3</sub><sup>-</sup>) are produced by the action of an inducible <it>Anopheles culicifacies </it>NO synthase (AcNOS) in mosquito mid-guts and may be central to anti-parasitic arsenal of these mosquitoes.</p> <p>Method</p> <p>While exploring a plausible mechanism of refractoriness based on nitric oxide synthase physiology among the sibling species of <it>An. culicifacies</it>, a sensitive, specific and cost effective high performance liquid chromatography (HPLC) method was developed, which is not influenced by the presence of biogenic amines, for the determination of NO<sub>2</sub><sup>- </sup>and NO<sub>3</sub><sup>- </sup>from mosquito mid-guts and haemolymph.</p> <p>Results</p> <p>This method is based on extraction, efficiency, assay reproducibility and contaminant minimization. It entails de-proteinization by centrifugal ultra filtration through ultracel 3 K filter and analysis by high performance anion exchange liquid chromatography (Sphereclone, 5 μ SAX column) with UV detection at 214 nm. The lower detection limit of the assay procedure is 50 pmoles in all midgut and haemolymph samples. Retention times for NO<sub>2</sub><sup>- </sup>and NO<sub>3</sub><sup>- </sup>in standards and in mid-gut samples were 3.42 and 4.53 min. respectively. Assay linearity for standards ranged between 50 n<it>M </it>and 1 m<it>M</it>. Recoveries of NO<sub>2</sub><sup>- </sup>and NO<sub>3</sub><sup>- </sup>from spiked samples (1–100 μ<it>M</it>) and from the extracted standards (1–100 μ<it>M</it>) were calculated to be 100%. Intra-assay and inter assay variations and relative standard deviations (RSDs) for NO<sub>2</sub><sup>- </sup>and NO<sub>3</sub><sup>- </sup>in spiked and un-spiked midgut samples were 5.7% or less. Increased levels NO<sub>2</sub><sup>- </sup>and NO<sub>3</sub><sup>- </sup>in midguts and haemolymph of <it>An. culicifacies </it>sibling species B in comparison to species A reflect towards a mechanism of refractoriness based on AcNOS physiology.</p> <p>Conclusion</p> <p>HPLC is a sensitive and accurate technique for identification and quantifying pmole levels of NO metabolites in mosquito midguts and haemolymph samples that can be useful for clinical investigations of NO biochemistry, physiology and pharmacology in various biological samples.</p
Hsp90 chaperone in disease
The molecular chaperone Hsp90 is at the heart of protein homeostasis control. A wide range of pathologies disturbs protein homeostasis, thus placing Hsp90 at the crossroads of many diseases. Here, we evaluate the impact of recent progress in understanding the molecular mechanism of Hsp90-client interactions and their role in disease. We discuss the role of Hsp90 for hormonal imbalances, cancer and neurodegenerative disorders. For each disease class we discuss implications of complexes in which Hsp90 binds to a paradigmatic client: the transcription factor Glucocorticoid Receptor, the kinase Cdk4 and the microtubule stabilizer Tau. The mechanistic insights allow us to elaborate on possible therapeutic intervention routes. Hsp90 is a druggable chaperone. Thus, understanding Hsp90 biology at molecular resolution offers an interesting approach to tackle protein-related diseases
The airway epithelium: structural and functional properties in health and disease
The major function of the respiratory epithelium was once thought to be that of a physical barrier. However, it constitutes the interface between the internal milieu and the external environment as well as being a primary target for inhaled respiratory drugs. It also responds to changes in the external environment by secreting a large number of molecules and mediators that signal to cells of the immune system and underlying mesenchyme. Thus, the epithelium is in a unique position to translate gene-environment interactions. Normally, the epithelium has a tremendous capacity to repair itself following injury. However, evidence is rapidly accumulating to show that the airway epithelium of asthmatics is abnormal and has increased susceptibility to injury compared to normal epithelium. Areas of detachment and fragility are a characteristic feature not observed in other inflammatory diseases such as COPD. In addition to being more susceptible to damage, normal repair processes are also compromised. Failure of appropriate growth and differentiation of airway epithelial cells will cause persistent mucosal injury. The response to traditional therapy such as glucocorticoids may also be compromised. However, whether the differences observed in asthmatic epithelium are a cause of or secondary to the development of the disease remains unanswered. Strategies to address this question include careful examination of the ontogeny of the disease in children and use of gene array technology should provide some important answers, as well as allow a better understanding of the critical role that the epithelium plays under normal conditions and in diseases such as asthma