698 research outputs found
Schlieren Imaging and Flow Analysis on a Cone/Flare Model in the AFRL Mach 6 Ludwieg Tube Facility
High-speed Schlieren photography was utilized to visualize flow in the Air Force Research Laboratory Mach 6 Ludwieg tube facility. A 7° half-angle cone/flare model with variable nosetip radius and flare angle options was used in the study. Testing was performed at two driver tube pressures, generating freestream Reynolds numbers of 10.0x106 and 19.8x106 per meter. The variable-angle flare portion of the model provided a method for adjusting the intensity of the adverse pressure gradient at the cone/flare junction. As expected from existing literature, boundary layer separation along the cone frustum occurred further upstream as the magnitude of the adverse pressure gradient increased. Imaging of the four cone tip radii revealed a slightly positive angle of attack for the model. This conclusion was supported by asymmetrical heating contours observed in a prior infrared thermography study on the same model. Measurements of the bow shock angles downstream of the cone tip verified Mach 6 flow from the Ludwieg tube nozzle when analyzed using Taylor-Maccoll theory. Blunt cone tips generated laminar boundary layers along the cone frustum. These laminar boundary layers led to unstable behavior in the recirculation region at the cone/flare junction. Analysis of the instability revealed loosely cyclical behavior. Pressure data from the model surface would provide much greater insight into local boundary layer behavior. Future hypersonic vehicles will inevitably include numerous adverse pressure gradients. A full understanding of these regions is imperative to successful design and flight testing
Political branding equity: a study on Thai young voters’ intention on future forward party
Political branding reflects the political standing, ideology and image of a political party which impacts the memory and perception of voters. Party brand equity has value, property, and huge party brand trust, which influence the voting intention of voters. Therefore, integrating political branding into a political party increases the opportunities
to win elections. This research aimed to examine the case of a new political party that shows political branding as a Future Forward Party. The main research objectives were: (a) to identify the relationship between party brand equity, components and voting intention; (b) to identify the relationship between party brand equity, components and
party brand attitude; (c) to identify the relationship between party brand attitude and voting intention and (d) to determine the mediating effect of party brand attitude on the relationship between party brand equity, components, and voting intention. The research employed a cross-sectional study using survey questionnaires. The research findings indicate that party brand equity and components have significant relationships with voting intention, while party brand equity and components have significant relationships with party brand attitude. Moreover, party brand attitude has a significant relationship
with voting intention. The party brand attitude significantly mediates the relationship between party brand equity, components, and voting intention. Besides these, the findings confirmed that the Theory of Reasoned Action and the Theory of Planned Behaviour could analyse political branding
Polymorphisms within a polymorphism: SNPs in and around a polymorphic Alu insertion in intron 44 of the human dystrophin gene
A polymorphic Yb-type Alu insertion on Xp21.3 shows a genotypic gradient across worldwide populations. We used single strand conformational polymorphism (SSCP), denaturing high-pressure liquid chromatography (DHPLC), and sequencing to characterize the level of polymorphism within this region. Two novel polymorphic sites were found within the Alu insertion itself, and a further seven novel polymorphic sites in the 2-kb flanking region. Our results showed that while DHPLC was more sensitive than SSCP, the limitations of DHPLC included the lack of ability to distinguish between multiple alleles or safely identify mutations on a polymorphic background. We believe that this is the first report of polymorphic single nucleotide polymorphisms (SNPs) within a polymorphic Alu distribution and that together they promise to provide a useful marker for human population and evolutionary genetics
Analysis of nucleotide diversity of NAT2 coding region reveals homogeneity across Native American populations and high intra-population diversity.
N-acetyltransferase 2 (NAT2), an important enzyme in clinical pharmacology, metabolizes antibiotics such as isoniazid and sulfamethoxazole, and catalyzes the transformation of aromatic and heterocyclic amines from the environment and diet into carcinogenic intermediates. Polymorphisms in NAT2 account for variability in the acetylator phenotype and the pharmacokinetics of metabolized drugs. Native Americans, settled in rural areas and large cities of Latin America, are under-represented in pharmacogenetics studies; therefore, we sequenced the coding region of NAT2 in 456 chromosomes from 13 populations from the Americas, and two from Siberia, detecting nine substitutions and 11 haplotypes. Variants *4 (37%), *5B (23%) and *7B (24%) showed high frequencies. Average frequencies of fast, intermediate and slow acetylators across Native Americans were 18, 56 and 25%, respectively. NAT2 intra-population genetic diversity for Native Americans is higher than East Asians and similar to the rest of the world, and NAT2 variants are homogeneously distributed across native populations of the continent
Importance of Localized Skin Infection in Tick-Borne Encephalitis Virus Transmission
AbstractArboviruses are transmitted to vertebrates by the ”bite“ of infected arthropods. Events at the site of virus deposition are largely unknown despite increasing evidence that blood-sucking arthropods immunomodulate their skin site of feeding. This question is particularly relevant for ixodid ticks that feed for several days. To examine events under conditions mimicking tick-borne encephalitis (TBE) virus transmission in nature (i.e., infected and uninfectedIxodes ricinusticks feeding on the same animal), infected adult and uninfected nymphal ticks were placed in one retaining chamber (skin site A) and uninfected nymphs were placed within a second chamber posteriorly (skin site B) on two natural host species, yellow-necked field mice (Apodemus flavicollis) and bank voles (Clethrionomys glareolus). Virus transmission from infected to uninfected cofeeding ticks was correlated with infection in the skin site of tick feeding. Furthermore, virus was recruited preferentially to the site in which ticks were feeding compared with uninfested skin sites. Viremia did not correspond with a generalized infection of the skin; virus was not detected in an uninfested skin site (C) of 12/13 natural hosts that had viremia levels ≥2.0 log10ic mouse LD50/0.02 ml blood. To characterize infected cells, laboratory mouse strains were infested with infected ticks and then explants were removed from selected skin sites and floated on culture medium. Numerous leukocytes were found to migrate from the skin explants of tick feeding sites. Two-color immunocytochemistry revealed viral antigen in both migratory Langerhans cells and neutrophils; in addition, the migratory monocyte/macrophages were shown to produce infectious virus. The results indicate that the local skin site of tick feeding is an important focus of viral replication early after TBE virus transmission by ticks. Cellular infiltration of tick feeding sites, and the migration of cells from such sites, may provide a vehicle for transmission between infected and uninfected cofeeding ticks that is independent of a patent viremia. The data support the hypothesis that viremia is a product, rather than a prerequisite, of tick-borne virus transmission
Recommended from our members
Non-hemagglutinating flaviviruses: molecular mechanisms for the emergence of new strains via adaptation to European ticks
Tick-borne encephalitis virus (TBEV) causes human epidemics across Eurasia. Clinical manifestations range from inapparent infections and fevers to fatal encephalitis but the factors that determine disease severity are currently undefined. TBEV is characteristically a hemagglutinating (HA) virus; the ability to agglutinate erythrocytes tentatively reflects virion receptor/fusion activity. However, for the past few years many atypical HA-deficient strains have been isolated from patients and also from the natural European host tick, Ixodes persulcatus. By analysing the sequences of HA-deficient strains we have identified 3 unique amino acid substitutions (D67G, E122G or D277A) in the envelope protein, each of which increases the net charge and hydrophobicity of the virion surface. Therefore, we genetically engineered virus mutants each containing one of these 3 substitutions; they all exhibited HA-deficiency. Unexpectedly, each genetically modified non-HA virus demonstrated increased TBEV reproduction in feeding Ixodes ricinus, not the recognised tick host for these strains. Moreover, virus transmission efficiency between infected and uninfected ticks co-feeding on mice was also intensified by each substitution. Retrospectively, the mutation D67G was identified in viruses isolated from patients with encephalitis. We propose that the emergence of atypical Siberian HA-deficient TBEV strains in Europe is linked to their molecular adaptation to local ticks. This process appears to be driven by the selection of single mutations that change the virion surface thus enhancing receptor/fusion function essential for TBEV entry into the unfamiliar tick species. As the consequence of this adaptive mutagenesis, some of these mutations also appear to enhance the ability of TBEV to cross the human blood-brain barrier, a likely explanation for fatal encephalitis. Future research will reveal if these emerging Siberian TBEV strains continue to disperse westwards across Europe by adaptation to the indigenous tick species and if they are associated with severe forms of TBE
Characteristics of transposable element exonization within human and mouse
Insertion of transposed elements within mammalian genes is thought to be an
important contributor to mammalian evolution and speciation. Insertion of
transposed elements into introns can lead to their activation as alternatively
spliced cassette exons, an event called exonization. Elucidation of the
evolutionary constraints that have shaped fixation of transposed elements
within human and mouse protein coding genes and subsequent exonization is
important for understanding of how the exonization process has affected
transcriptome and proteome complexities. Here we show that exonization of
transposed elements is biased towards the beginning of the coding sequence in
both human and mouse genes. Analysis of single nucleotide polymorphisms (SNPs)
revealed that exonization of transposed elements can be population-specific,
implying that exonizations may enhance divergence and lead to speciation. SNP
density analysis revealed differences between Alu and other transposed
elements. Finally, we identified cases of primate-specific Alu elements that
depend on RNA editing for their exonization. These results shed light on TE
fixation and the exonization process within human and mouse genes.Comment: 11 pages, 4 figure
A Praziquantel Treatment Study of Immune and Transcriptome Profiles in Schistosoma haematobium-Infected Gabonese Schoolchildren.
BACKGROUND: Although Schistosoma haematobium infection has been reported to be associated with alterations in immune function, in particular immune hyporesponsiveness, there have been only few studies that have used the approach of removing infection by drug treatment to establish this and to understand the underlying molecular mechanisms. METHODS: Schistosoma haematobium-infected schoolchildren were studied before and after praziquantel treatment and compared with uninfected controls. Cellular responses were characterized by cytokine production and flow cytometry, and in a subset of children RNA sequencing (RNA-Seq) transcriptome profiling was performed. RESULTS: Removal of S haematobium infection resulted in increased schistosome-specific cytokine responses that were negatively associated with CD4+CD25+FOXP3+ T-cells and accompanied by increased frequency of effector memory T-cells. Innate responses to Toll like receptor (TLR) ligation decreased with treatment and showed positive association with CD4+CD25+FOXP3+ T-cells. At the transcriptome level, schistosome infection was associated with enrichment in cell adhesion, whereas parasite removal was associated with a more quiescent profile. Further analysis indicated that alteration in cellular energy metabolism was associated with S haematobium infection and that the early growth response genes 2 and 3 (EGR 2 and EGR3), transcription factors that negatively regulate T-cell activation, may play a role in adaptive immune hyporesponsiveness. CONCLUSIONS: Using a longitudinal study design, we found contrasting effects of schistosome infection on innate and adaptive immune responses. Whereas the innate immune system appears more activated, the adaptive immunity is in a hyporesponsive state reflected in alterations in CD4+CD25+FOXP3+ T-cells, cellular metabolism, and transcription factors involved in anergy
- …