177 research outputs found

    Fast, deterministic computation of the Hermite normal form and determinant of a polynomial matrix

    Get PDF
    Given a nonsingular n×nn \times n matrix of univariate polynomials over a field K\mathbb{K}, we give fast and deterministic algorithms to compute its determinant and its Hermite normal form. Our algorithms use O~(nωs)\widetilde{\mathcal{O}}(n^\omega \lceil s \rceil) operations in K\mathbb{K}, where ss is bounded from above by both the average of the degrees of the rows and that of the columns of the matrix and ω\omega is the exponent of matrix multiplication. The soft-OO notation indicates that logarithmic factors in the big-OO are omitted while the ceiling function indicates that the cost is O~(nω)\widetilde{\mathcal{O}}(n^\omega) when s=o(1)s = o(1). Our algorithms are based on a fast and deterministic triangularization method for computing the diagonal entries of the Hermite form of a nonsingular matrix.Comment: 34 pages, 3 algorithm

    Constructing minimal telescopers for rational functions in three discrete variables

    Full text link
    We present a new algorithm for constructing minimal telescopers for rational functions in three discrete variables. This is the first discrete reduction-based algorithm that goes beyond the bivariate case. The termination of the algorithm is guaranteed by a known existence criterion of telescopers. Our approach has the important feature that it avoids the potentially costly computation of certificates. Computational experiments are also provided so as to illustrate the efficiency of our approach
    corecore