1 research outputs found

    Modèles adaptatifs pour prédire automatiquement la compétence lexicale d'un apprenant de français langue étrangère

    No full text
    Cette étude examine l'utilisation de méthodes d'apprentissage incrémental supervisé afin de prédire la compétence lexicale d'apprenants de français langue étrangère (FLE). Les apprenants ciblés sont des néerlandophones ayant un niveau A2/B1 selon le Cadre européen commun de référence pour les langues (CECR). A l'instar des travaux récents portant sur la prédiction de la maîtrise lexicale à l'aide d'indices de complexité, nous élaborons deux types de modèles qui s'adaptent en fonction d'un retour d'expérience, révélant les connaissances de l'apprenant. En particulier, nous définissons (i) un modèle qui prédit la compétence lexicale de tous les apprenants du même niveau de maîtrise et (ii) un modèle qui prédit la compétence lexicale d'un apprenant individuel. Les modèles obtenus sont ensuite évalués par rapport à un modèle de référence, déterminant la compétence lexicale à partir d'un lexique spécialisé pour le FLE, et s'avèrent gagner significativement en exactitude (9%-17%)
    corecore