23 research outputs found

    Fate of Environmental Pollutants

    No full text
    A review of the literature published in 2012 on topics relating to the fate of emerging environmental pollutants during wastewater treatment is presented. This review is divided into the following sections: biological agents, estrogens, industrial wastewater, metals, nanomaterials, persistent organic pollutants, pharmaceuticals and personal care products, and trace organic contaminants

    Fate of Environmental Pollutants

    No full text
    A review of the literature published in 2013 on topics relating to the fate of emerging environmental pollutants during wastewater treatment is presented. This review is divided into the following sections: emerging biological agents, estrogens, metals, nanomaterials, nutrients, persistent organic pollutants, pharmaceuticals and personal care products and herbicide, and trace organic contaminant

    Occurrence and fate of pharmaceuticals in WWTPs in India and comparison with a similar study in the United States

    No full text
    The objective of this study was to study the occurrence, fate, and seasonal variations of pharmaceuticals at two urban wastewater treatment plants (WWTPs) in India and compare the results with a similar study conducted in the United States. This is the first study of its kind in comparing occurrence and fate of pharmaceuticals in wastewater of two different countries with the same methodology and analytical techniques. Twelve most relevant pharmaceuticals were selected for seasonal monitoring at two Indian WWTPs based on the comprehensive survey and through literature review. The yearly average influent concentrations of total pharmaceuticals were found to be 537 +/- 5 mu g/L at WWTP-1 and 353 +/- 9 mu g/L at WWTP-2. WWTP-2 exhibited comparatively higher removal efficiency of total pharmaceuticals (85% versus 59%, excluding monsoon season), possibly due to the cyclic activated sludge technology followed by chlorination employed at WWTP-2. Comparison with a similar study conducted in the United States revealed that concentration of most of the pharmaceuticals detected in the U.S. WWTPs were, on an average, more than 50% lower. U.S. WWTPs also exhibited 10-30% higher removal efficiencies for total pharmaceuticals. Our study results show that preliminary treatment and biological treatment alone are not adequate for complete removal of pharmaceuticals and polishing step and tertiary treatment is a necessity if higher removal of pharmaceuticals is desired in Indian WWTPs. Information obtained from this study will not only aid the local utilities but will also benefit understanding of global trends in usage of pharmaceuticals and their distribution in the environment. (C) 2016 Elsevier Ltd. All rights reserved

    N-nitrosodimethylamine (NDMA) formation potential of amine-based water treatment polymers: Effects of in situ chloramination, breakpoint chlorination, and pre-oxidation

    No full text
    Recent studies show that cationic amine-based water treatment polymers may be important precursors that contribute to formation of the probable human carcinogen N-nitrosodimethylamine (NDMA) during water treatment and disinfection. To better understand how water treatment parameters affect NDMA formation from the polymers, the effects of in situ chloramination, breakpoint chlorination, and pre-oxidation on the NDMA formation from the polymers were investigated. NDMA formation potential (NDMA-FP) as well as dimethylamine (DMA) residual concentration were measured from poly(epichlorohydrin dimethylamine) (polyamine) and poly(diallyldimethylammonium chloride) (poly-DADMAC) solutions upon reactions with oxidants including free chlorine, chlorine dioxide, ozone, and monochloramine under different treatment conditions. The results supported that dichloramine (NHCl2) formation was the critical factor affecting NDMA formation from the polymers during in situ chloramination. The highest NDMA formation from the polymers occurred near the breakpoint of chlorination. Polymer chain breakdown and transformation of the released DMA and other intermediates were important factors affecting NDMA formation from the polymers in pre-oxidation followed by post-chloramination. Pre-oxidation generally reduced NDMA-FP of the polymers; however, the treatments involving pre-ozonation increased polyDADMAC's NDMA-FP and DMA release. The strategies for reducing NDMA formation from the polymers may include the avoidance of the conditions favorable to NHCl2 formation and the avoidance of polymer exposure to strong oxidants such as ozone. (C) 2014 Elsevier B.V. All rights reserved

    Membrane Processes

    No full text
    This review, for literature published in 2013, contains information related to membrane processes for municipal and industrial applications. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following topics: pretreatment, membrane bioreactor (MBR) configuration, design, nutrient removal, operation, industrial treatment, fixed film and anaerobic membrane systems, reuse, microconstituents removal, membrane technology advances, membrane fouling, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include: Biological Fixed-Film Systems, Activated Sludge and Other Aerobic Suspended Culture Processes, Anaerobic Processes, Water Reclamation and Reuse. The following sections might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants
    corecore