6,074 research outputs found

    Pattern formation driven by cross--diffusion in a 2D domain

    Full text link
    In this work we investigate the process of pattern formation in a two dimensional domain for a reaction-diffusion system with nonlinear diffusion terms and the competitive Lotka-Volterra kinetics. The linear stability analysis shows that cross-diffusion, through Turing bifurcation, is the key mechanism for the formation of spatial patterns. We show that the bifurcation can be regular, degenerate non-resonant and resonant. We use multiple scales expansions to derive the amplitude equations appropriate for each case and show that the system supports patterns like rolls, squares, mixed-mode patterns, supersquares, hexagonal patterns

    Turing Instability and Pattern Formation in an Activator-Inhibitor System with Nonlinear Diffusion

    Full text link
    In this work we study the effect of density dependent nonlinear diffusion on pattern formation in the Lengyel--Epstein system. Via the linear stability analysis we determine both the Turing and the Hopf instability boundaries and we show how nonlinear diffusion intensifies the tendency to pattern formation; %favors the mechanism of pattern formation with respect to the classical linear diffusion case; in particular, unlike the case of classical linear diffusion, the Turing instability can occur even when diffusion of the inhibitor is significantly slower than activator's one. In the Turing pattern region we perform the WNL multiple scales analysis to derive the equations for the amplitude of the stationary pattern, both in the supercritical and in the subcritical case. Moreover, we compute the complex Ginzburg-Landau equation in the vicinity of the Hopf bifurcation point as it gives a slow spatio-temporal modulation of the phase and amplitude of the homogeneous oscillatory solution.Comment: Accepted for publication in Acta Applicandae Mathematica

    Turing pattern formation in the Brusselator system with nonlinear diffusion

    Full text link
    In this work we investigate the effect of density dependent nonlinear diffusion on pattern formation in the Brusselator system. Through linear stability analysis of the basic solution we determine the Turing and the oscillatory instability boundaries. A comparison with the classical linear diffusion shows how nonlinear diffusion favors the occurrence of Turing pattern formation. We study the process of pattern formation both in 1D and 2D spatial domains. Through a weakly nonlinear multiple scales analysis we derive the equations for the amplitude of the stationary patterns. The analysis of the amplitude equations shows the occurrence of a number of different phenomena, including stable supercritical and subcritical Turing patterns with multiple branches of stable solutions leading to hysteresis. Moreover we consider traveling patterning waves: when the domain size is large, the pattern forms sequentially and traveling wavefronts are the precursors to patterning. We derive the Ginzburg-Landau equation and describe the traveling front enveloping a pattern which invades the domain. We show the emergence of radially symmetric target patterns, and through a matching procedure we construct the outer amplitude equation and the inner core solution.Comment: Physical Review E, 201

    Screening Effects in Superfluid Nuclear and Neutron Matter within Brueckner Theory

    Get PDF
    Effects of medium polarization are studied for 1S0^1S_0 pairing in neutron and nuclear matter. The screening potential is calculated in the RPA limit, suitably renormalized to cure the low density mechanical instability of nuclear matter. The selfenergy corrections are consistently included resulting in a strong depletion of the Fermi surface. All medium effects are calculated based on the Brueckner theory. The 1S0^1S_0 gap is determined from the generalized gap equation. The selfenergy corrections always lead to a quenching of the gap, which is enhanced by the screening effect of the pairing potential in neutron matter, whereas it is almost completely compensated by the antiscreening effect in nuclear matter.Comment: 8 pages, 6 Postscript figure

    Dense Quarks, and the Fermion Sign Problem, in a SU(N) Matrix Model

    Full text link
    We study the effect of dense quarks in a SU(N) matrix model of deconfinement. For three or more colors, the quark contribution to the loop potential is complex. After adding the charge conjugate loop, the measure of the matrix integral is real, but not positive definite. In a matrix model, quarks act like a background Z(N) field; at nonzero density, the background field also has an imaginary part, proportional to the imaginary part of the loop. Consequently, while the expectation values of the loop and its complex conjugate are both real, they are not equal. These results suggest a possible approach to the fermion sign problem in lattice QCD.Comment: 9 pages, 3 figure

    Equilibrium molecular energies used to obtain molecular dissociation energies and heats of formation within the bond-order correlation approach

    Full text link
    Ab initio calculations including electron correlation are still extremely costly except for the smallest atoms and molecules. Therefore, our purpose in the present study is to employ a bond-order correlation approach to obtain, via equilibrium molecular energies, molecular dissociation energies and heats of formation for some 20 molecules containing C, H, and O atoms, with a maximum number of electrons around 40. Finally, basis set choice is shown to be important in the proposed procedure to include electron correlation effects in determining thermodynamic properties. With the optimum choice of basis set, the average percentage error for some 20 molecules is approximately 20% for heats of formation. For molecular dissociation energies the average error is much smaller: ~0.4.Comment: Mol. Phys., to be publishe

    Mass gap in the 2D O(3) non-linear sigma model with a theta=pi term

    Full text link
    By analytic continuation to real theta of data obtained from numerical simulation at imaginary theta we study the Haldane conjecture and show that the O(3) non-linear sigma model with a theta term in 2 dimensions becomes massless at theta=3.10(5). A modified cluster algorithm has been introduced to simulate the model with imaginary theta. Two different definitions of the topological charge on the lattice have been used; one of them needs renormalization to match the continuum operator. Our work also offers a successful test for numerical methods based on analytic continuation.Comment: Latex file, 4 pages. To appear in PRD; it contains the justification of analicity, more details about the fits, more references, et
    • …
    corecore