21 research outputs found
Panorametry: suggestion of a method for mandibular measurements on panoramic radiographs
<p>Abstract</p> <p>Background</p> <p>Orthopantomography (panoramic radiography) has been used for the study of measurements involving particularly the prediction of the eruption of impacted lower third molars and analyses of measurements of the ramus and head of mandible. The discrepancies involved with the projection of this radiographic image has stimulated the search for further ways to use it, particularly in orthodontic treatments and oral and maxillofacial surgeries. The author proposes a graphimetric method for the mandible, based on panoramic radiography. The results are expressed in linear and angular measurements, aiming at bilateral comparisons as well as the determination of the proportion of skeletal and dental structures, individually and among themselves as a whole. The method has been named Panorametry, and allows measurement of the mandible (Mandibular Panorametry) or the posterior mandibular teeth (Dental Panorametry). When combining mandible and maxilla, it should be referred to as Total Panorametry. It may also be used, in the future, with Cone Beam computed tomography (CT) images, and in this case it may be mentioned as CT Panorametry.</p
Resource limitation drives spatial organization in microbial groups.
Dense microbial groups such as bacterial biofilms commonly contain a diversity of cell types that define their functioning. However, we have a limited understanding of what maintains, or purges, this diversity. Theory suggests that resource levels are key to understanding diversity and the spatial arrangement of genotypes in microbial groups, but we need empirical tests. Here we use theory and experiments to study the effects of nutrient level on spatio-genetic structuring and diversity in bacterial colonies. Well-fed colonies maintain larger well-mixed areas, but they also expand more rapidly compared with poorly-fed ones. Given enough space to expand, therefore, well-fed colonies lose diversity and separate in space over a similar timescale to poorly fed ones. In sum, as long as there is some degree of nutrient limitation, we observe the emergence of structured communities. We conclude that resource-driven structuring is central to understanding both pattern and process in diverse microbial communities
Mapping of topoisomerase II α epitopes recognized by autoantibodies in idiopathic pulmonary fibrosis
Autoantibodies against DNA topoisomerase II α have been identified in the sera of patients with idiopathic pulmonary fibrosis (IPF). To map topoisomerase II autoepitopes, we tested by ELISA and immunoblotting the IPF anti-topoisomerase II-positive sera against a series of recombinant proteins which covered the full length of topoisomerase II α. Specific patterns of reactivity were observed, indicating the existence of multiple epitopes on topoisomerase II, either highly complex or conformational/discontiguous or conformational/contiguous ones. The latter resided in amino acid residues 854–1147 and 1370–1447. A detailed analysis of these regions was undertaken, but we were not able to pinpoint a sequential peptide-sized epitope, or any significant homology with foreign pathogens. Further, we observed a significant correlation between the progression from a contiguous to a quaternary/tertiary structure-dependent autoepitope and the disease duration but not with the disease severity. Therefore, this result supports the hypothesis that anti-topoisomerase II autoreactivity evolves following an antigen-driven process