35 research outputs found
CD28 down-regulation on circulating CD4 T-cells is associated with poor prognoses of patients with idiopathic pulmonary fibrosis
Background: Although the etiology of idiopathic pulmonary fibrosis (IPF) remains perplexing, adaptive immune activation is evident among many afflicted patients. Repeated cycles of antigen-induced proliferation cause T-cells to lose surface expression of CD28, and we hypothesized this process might also occur in IPF. Methodology/Principal Findings: Peripheral blood CD4 T-cells from 89 IPF patients were analyzed by flow cytometry and cytokine multiplex assays, and correlated with clinical events. In comparison to autologous CD4 +CD28+cells, the unusual CD4+CD28 null lymphocytes seen in many IPF patients had discordant expressions of activation markers, more frequently produced cytotoxic mediators perforin (2.4±0.8% vs. 60.0±7.4%, p<0.0001) and granzyme B (4.5±2.8% vs.74.9±6.5%, p<0.0001), produced greater amounts of many pro-inflammatory cytokines, and less frequently expressed the regulatory T-cell marker FoxP3 (12.9±1.1% vs. 3.3±0.6% p<0.0001). Infiltration of CD4+CD28null T-cells in IPF lungs was confirmed by confocal microscopy. Interval changes of CD28 expression among subjects who had replicate studies were correlated with conterminous changes of their forced vital capacities (rs = 0.49, p = 0.012). Most importantly, one-year freedom from major adverse clinical events (either death or lung transplantation) was 56±6% among 78 IPF patients with CD4 +CD28+/CD4total≥82%, compared to 9±9% among those with more extensive CD28 down-regulation (CD4+CD28 +/CD4total<82%) (p = 0.0004). The odds ratio for major adverse events among those with the most extensive CD28 down-regulation was 13.0, with 95% confidence intervals 1.6-111.1. Conclusions/Significance: Marked down-regulation of CD28 on circulating CD4 T-cells, a result of repeated antigen-driven proliferations, is associated with poor outcomes in IPF patients. The CD4+CD28null cells of these patients have potentially enhanced pathogenic characteristics, including increased productions of cytotoxic mediators and pro-inflammatory cytokines. These findings show proliferative T-cell responses to antigen(s) resulting in CD28 down-regulation are associated with progression and manifestations of IPF, and suggest assays of circulating CD4 T-cells may identify patients at greatest risk for clinical deterioration. © 2010 Gilani et al
Cartilage oligomeric matrix protein in idiopathic pulmonary fibrosis
Idiopathic pulmonary fibrosis (IPF) is a progressive and life threatening disease with median survival of 2.5-3 years. The IPF lung is characterized by abnormal lung remodeling, epithelial cell hyperplasia, myofibroblast foci formation, and extracellular matrix deposition. Analysis of gene expression microarray data revealed that cartilage oligomeric matrix protein (COMP), a non-collagenous extracellular matrix protein is among the most significantly up-regulated genes (Fold change 13, p-value <0.05) in IPF lungs. This finding was confirmed at the mRNA level by nCounter® expression analysis in additional 115 IPF lungs and 154 control lungs as well as at the protein level by western blot analysis. Immunohistochemical analysis revealed that COMP was expressed in dense fibrotic regions of IPF lungs and co-localized with vimentin and around pSMAD3 expressing cells. Stimulation of normal human lung fibroblasts with TGF-β1 induced an increase in COMP mRNA and protein expression. Silencing COMP in normal human lung fibroblasts significantly inhibited cell proliferation and negatively impacted the effects of TGF-β1 on COL1A1 and PAI1. COMP protein concentration measured by ELISA assay was significantly increased in serum of IPF patients compared to controls. Analysis of serum COMP concentrations in 23 patients who had prospective blood draws revealed that COMP levels increased in a time dependent fashion and correlated with declines in force vital capacity (FVC). Taken together, our results should encourage more research into the potential use of COMP as a biomarker for disease activity and TGF-β1 activity in patients with IPF. Hence, studies that explore modalities that affect COMP expression, alleviate extracellular matrix rigidity and lung restriction in IPF and interfere with the amplification of TGF-β1 signaling should be persuaded. © 2013 Vuga et al
A High Throughput Screen Identifies Nefopam as Targeting Cell Proliferation in β-Catenin Driven Neoplastic and Reactive Fibroproliferative Disorders
Fibroproliferative disorders include neoplastic and reactive processes (e.g. desmoid tumor and hypertrophic scars). They are characterized by activation of β-catenin signaling, and effective pharmacologic approaches are lacking. Here we undertook a high throughput screen using human desmoid tumor cell cultures to identify agents that would inhibit cell viability in tumor cells but not normal fibroblasts. Agents were then tested in additional cell cultures for an effect on cell proliferation, apoptosis, and β-catenin protein level. Ultimately they were tested in Apc1638N mice, which develop desmoid tumors, as well as in wild type mice subjected to full thickness skin wounds. The screen identified Neofopam, as an agent that inhibited cell numbers to 42% of baseline in cell cultures from β-catenin driven fibroproliferative disorders. Nefopam decreased cell proliferation and β-catenin protein level to 50% of baseline in these same cell cultures. The half maximal effective concentration in-vitro was 0.5 uM and there was a plateau in the effect after 48 hours of treatment. Nefopam caused a 45% decline in tumor number, 33% decline in tumor volume, and a 40% decline in scar size when tested in mice. There was also a 50% decline in β-catenin level in-vivo. Nefopam targets β-catenin protein level in mesenchymal cells in-vitro and in-vivo, and may be an effective therapy for neoplastic and reactive processes driven by β-catenin mediated signaling
Global Methylation Patterns in Idiopathic Pulmonary Fibrosis
BACKGROUND: Idiopathic Pulmonary Fibrosis (IPF) is characterized by profound changes in the lung phenotype including excessive extracellular matrix deposition, myofibroblast foci, alveolar epithelial cell hyperplasia and extensive remodeling. The role of epigenetic changes in determining the lung phenotype in IPF is unknown. In this study we determine whether IPF lungs exhibit an altered global methylation profile.\ud
\ud
METHODOLOGY/PRINCIPAL FINDINGS: Immunoprecipitated methylated DNA from 12 IPF lungs, 10 lung adenocarcinomas and 10 normal histology lungs was hybridized to Agilent human CpG Islands Microarrays and data analysis was performed using BRB-Array Tools and DAVID Bioinformatics Resources software packages. Array results were validated using the EpiTYPER MassARRAY platform for 3 CpG islands. 625 CpG islands were differentially methylated between IPF and control lungs with an estimated False Discovery Rate less than 5%. The genes associated with the differentially methylated CpG islands are involved in regulation of apoptosis, morphogenesis and cellular biosynthetic processes. The expression of three genes (STK17B, STK3 and HIST1H2AH) with hypomethylated promoters was increased in IPF lungs. Comparison of IPF methylation patterns to lung cancer or control samples, revealed that IPF lungs display an intermediate methylation profile, partly similar to lung cancer and partly similar to control with 402 differentially methylated CpG islands overlapping between IPF and cancer. Despite their similarity to cancer, IPF lungs did not exhibit hypomethylation of long interspersed nuclear element 1 (LINE-1) retrotransposon while lung cancer samples did, suggesting that the global hypomethylation observed in cancer was not typical of IPF.\ud
\ud
CONCLUSIONS/SIGNIFICANCE: Our results provide evidence that epigenetic changes in IPF are widespread and potentially important. The partial similarity to cancer may signify similar pathogenetic mechanisms while the differences constitute IPF or cancer specific changes. Elucidating the role of these specific changes will potentially allow better understanding of the pathogenesis of IPF.\ud
\u
Blood Biomarkers in Idiopathic Pulmonary Fibrosis.
PURPOSE: Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal lung disease of unknown origin whose incidence has been increasing over the latest decade partly as a consequence of population ageing. New anti-fibrotic therapy including pirfenidone and nintedanib have now proven efficacy in slowing down the disease. Nevertheless, diagnosis and follow-up of IPF remain challenging. METHODS: This review examines the recent literature on potentially useful blood molecular and cellular biomarkers in IPF. Most of the proposed biomarkers belong to chemokines (IL-8, CCL18), proteases (MMP-1 and MMP-7), and growth factors (IGBPs) families. Circulating T cells and fibrocytes have also gained recent interest in that respect. Up to now, though several interesting candidates are profiling there has not been a single biomarker, which proved to be specific of the disease and predictive of the evolution (decline of pulmonary function test values, risk of acute exacerbation or mortality). CONCLUSION: Large scale multicentric studies are eagerly needed to confirm the utility of these biomarkers