85 research outputs found

    The Quantitative Analysis of Water Mass during Winter on the East China Sea Shelf Using an Extended OMP Analysis

    Get PDF
    The distribution and quantification of water masses on the East China Sea (ECS) shelf is important for identifying and understanding historical climate-driven changes in ocean properties and circulation in the region. We applied an extended Optimum Multiparameter (eOMP) analysis to quantify the relative contribution of water masses using wintertime temperature, salinity, nitrate (NO3−), phosphate (PO43−), and silicate (SiO32−) measurements from a five-cruises dataset spanning from 2013 to 2018. Average ratios (NO3−:PO43−:SiO32− = 47:1:35) derived from field observations were used to correct the equations referring to the chemical parameters. Our analysis indicated that wintertime seawater on the ECS shelf consisted mainly of Changjiang Dilute Water (CDW), Yellow Sea Coastal Water (YSCW), Taiwan Warm Current Water (TWCW), and East China Sea Shelf Water (ECSSW). The results from the eOMP analysis demonstrated the natural boundaries of four water masses during winter. The interannual variability of water masses showed that the CDW distribution was relatively stable in winter, and there was strong anticorrelation between the YSCW and TWCW extents, suggesting that these two water masses mostly displace each other in the north-south direction.publishedVersio

    Association between high serum blood glucose lymphocyte ratio and all-cause mortality in non-traumatic cerebral hemorrhage: a retrospective analysis of the MIMIC-IV database

    Get PDF
    BackgroundThis study aimed to evaluate the association between the glucose-to-lymphocyte ratio (GLR) and all-cause mortality in intensive care unit (ICU) patients with Non-traumatic cerebral hemorrhage.MethodsThis is a retrospective cohort study. Baseline data and in-hospital prognosis from patients with non-traumatic cerebral hemorrhage admitted to the intensive care unit. Multivariate COX regression analysis was applied and adjusted hazard ratios (HR) and 95% predictive values with confidence intervals (CI) were calculated. Survival curves for the two groups of cases were plotted using K-M curves, and subgroup analyses were performed in one step. Using restricted cubic spline curves, we analyzed the potential linear relationship between GLR and outcome indicators.ResultsIn the Medical Information Mart for Intensive Care IV (MIMIC-IV database), we extracted 3,783 patients with nontraumatic intracerebral hemorrhage, and 1,806 patients were finally enrolled in the study after exclusion of missing values and patients with a short hospital stay. The overall ICU mortality rate was 8.2% (148/1806) and the in-hospital mortality rate was 12.5% (225/1806). The use of curve fitting yielded a significant linear relationship between GLR and both ICU mortality and in-hospital mortality. It also suggested a reference point at GLR=3.9. These patients were categorized into high and low subgroups based on the median value of their GLR (GLR = 3.9). Model comparisons based on multivariate COX regression analysis showed that in-hospital mortality was higher in the high GLR group after adjusting for all confounders (HR = 1.31, 95% CI: 1.04-1.47), while the ICU mortality in the high GLR group was (HR = 1.73, 95% CI: 1.18-2.52). Stratified analyses based on age, gender, race, GCS, BMI, and disease type showed stable correlations between the high GLR group and in-hospital and ICU mortality.ConclusionBased on our retrospective analysis, it is known that as the GLR increased, the in-hospital mortality rate and ICU mortality rate of patients with nontraumatic cerebral hemorrhage also increased progressively in the United States in a clear linear relationship. However, further studies are needed to confirm these findings

    Simulation of Contrast Agent Transport in Arteries with Multilayer Arterial Wall: Impact of Arterial Transmural Transport on the Bolus Delay and Dispersion

    Get PDF
    One assumption of DSC-MRI is that the injected contrast agent is kept totally intravascular and the arterial wall is impermeable to contrast agent. The assumption is unreal for such small contrast agent as Gd-DTPA can leak into the arterial wall. To investigate whether the unreal assumption is valid for the estimation of the delay and dispersion of the contrast agent bolus, we simulated flow and Gd-DTPA transport in a model with multilayer arterial wall and analyzed the bolus delay and dispersion qualified by mean vascular transit time (MVTT) and the variance of the vascular transport function. Factors that may affect Gd-DTPA transport hence the delay and dispersion were further investigated, such as integrity of endothelium and disturbed flow. The results revealed that arterial transmural transport would slightly affect MVTT and moderately increase the variance. In addition, although the integrity of endothelium can significantly affect the accumulation of contrast agent in the arterial wall, it had small effects on the bolus delay and dispersion. However, the disturbed flow would significantly increase both MVTT and the variance. In conclusion, arterial transmural transport may have a small effect on the bolus delay and dispersion when compared to the flow pattern in the artery

    Methylprednisolone as Adjunct to Endovascular Thrombectomy for Large-Vessel Occlusion Stroke

    Get PDF
    Importance It is uncertain whether intravenous methylprednisolone improves outcomes for patients with acute ischemic stroke due to large-vessel occlusion (LVO) undergoing endovascular thrombectomy. Objective To assess the efficacy and adverse events of adjunctive intravenous low-dose methylprednisolone to endovascular thrombectomy for acute ischemic stroke secondary to LVO. Design, Setting, and Participants This investigator-initiated, randomized, double-blind, placebo-controlled trial was implemented at 82 hospitals in China, enrolling 1680 patients with stroke and proximal intracranial LVO presenting within 24 hours of time last known to be well. Recruitment took place between February 9, 2022, and June 30, 2023, with a final follow-up on September 30, 2023.InterventionsEligible patients were randomly assigned to intravenous methylprednisolone (n = 839) at 2 mg/kg/d or placebo (n = 841) for 3 days adjunctive to endovascular thrombectomy. Main Outcomes and Measures The primary efficacy outcome was disability level at 90 days as measured by the overall distribution of the modified Rankin Scale scores (range, 0 [no symptoms] to 6 [death]). The primary safety outcomes included mortality at 90 days and the incidence of symptomatic intracranial hemorrhage within 48 hours. Results Among 1680 patients randomized (median age, 69 years; 727 female [43.3%]), 1673 (99.6%) completed the trial. The median 90-day modified Rankin Scale score was 3 (IQR, 1-5) in the methylprednisolone group vs 3 (IQR, 1-6) in the placebo group (adjusted generalized odds ratio for a lower level of disability, 1.10 [95% CI, 0.96-1.25]; P = .17). In the methylprednisolone group, there was a lower mortality rate (23.2% vs 28.5%; adjusted risk ratio, 0.84 [95% CI, 0.71-0.98]; P = .03) and a lower rate of symptomatic intracranial hemorrhage (8.6% vs 11.7%; adjusted risk ratio, 0.74 [95% CI, 0.55-0.99]; P = .04) compared with placebo. Conclusions and Relevance Among patients with acute ischemic stroke due to LVO undergoing endovascular thrombectomy, adjunctive methylprednisolone added to endovascular thrombectomy did not significantly improve the degree of overall disability.Trial RegistrationChiCTR.org.cn Identifier: ChiCTR210005172

    Seasonal Variability of the Carbonate System and Air–Sea CO2 Flux in the Outer Changjiang Estuary, East China Sea

    Get PDF
    Three field surveys were conducted in the outer Changjiang Estuary on the inner shelf of the East China Sea in March, July, and October, 2018. Observations of total-scale pH (pHT), total alkalinity (AT), and calculated total dissolved inorganic carbon (CT), the partial pressure of CO2 (pCO2), and the air–sea CO2 exchange flux (FCO2) were studied in the surface waters. The results showed that the Changjiang Diluted Water (CDW) area was a source of atmospheric CO2 in July and October (4.97 and 8.67 mmol CO2/m2/day, respectively). The oversaturation of CO2 was mainly ascribed to the respiration of terrestrial organic and inorganic materials sourced from the Changjiang River discharge, overwhelming the CO2 uptake due to primary productivity despite the high phytoplankton biomass in summer. The air–sea CO2 flux was greater in October than in July in the CDW, which is attributed to the increasing wind speed. In contrast, the Yellow Sea Water (YSW) and the East China Sea Shelf Water (ECSSW) were a weak CO2 sink in March (–0.71 and –2.86 mmol CO2/m2/day, respectively) and July (–1.28 mmol CO2/m2/day in the ECSSW) following the CO2 uptake of phytoplankton production, however, they were a CO2 source by October (3.30 mmol CO2/m2/day in the YSW and 1.18 mmol CO2/m2/day in the ECSSW). The cooling effect during the cold season reduced the sea surface pCO2, resulting in a CO2 sink in the CDW, YSW, and ECSSW areas in March. However, the regions became a source of atmospheric CO2 in October, possibly driven by vertical mixing, which brought CT-enriched bottom water to the surface and increased the pCO2. The study region was a net CO2 sink in March and a net CO2 source in July and October with an average FCO2 of –1.25, 1.71, and 3.06 mmol CO2/m2/day, respectively.publishedVersio

    Hemodynamic performance within crossed stent grafts: computational and experimental study on the effect of cross position and angle

    No full text
    Abstract Background and aims The crossed limbs stent graft technique is regularly employed to treat abdominal aortic aneurysm patients with unfavorable aneurysm necks or widely splayed common iliac arteries. This article numerically evaluates the hemodynamic performance of the crossed limbs strategy by analyzing numerical simulations and conducting experiments using two series of idealized bifurcated stent grafts with different cross angles and cross positions. Results Results demonstrated that the absolute helicity at outlets decreased with increased cross angles and increased with decreased cross positions. The time-averaged wall shear stress remained approximately unchanged, whereas the oscillating shear index and relative resident time decreased slightly when the cross angle increased and cross position decreased in iliac grafts. Additionally, both numerical and in vitro experimental results indicate the displacement force acting on the stent graft gradually increased as cross angles increased and cross positions decreased. Results further indicated that strip areas with a high oscillating shear index and high relative resident time, which may be vulnerable to thrombosis formation, exist along the outer surface of the iliac artery grafts. Conclusion Given this information, the optimal crossed limbs configuration may contain a small cross angle and low cross position; however, low cross positions may increase the risk of migration

    Retrieving monthly and interannual total-scale pH (pHT) on the East China Sea shelf using an artificial neural network: ANN-pHT-v1

    Get PDF
    While our understanding of pH dynamics has strongly progressed for open-ocean regions, for marginal seas such as the East China Sea (ECS) shelf progress has been constrained by limited observations and complex interactions between biological, physical and chemical processes. Seawater pH is a very valuable oceanographic variable but not always measured using high-quality instrumentation and according to standard practices. In order to predict total-scale pH (pHT) and enhance our understanding of the seasonal variability of pHT on the ECS shelf, an artificial neural network (ANN) model was developed using 11 cruise datasets from 2013 to 2017 with coincident observations of pHT, temperature (T), salinity (S), dissolved oxygen (DO), nitrate (N), phosphate (P) and silicate (Si) together with sampling position and time. The reliability of the ANN model was evaluated using independent observations from three cruises in 2018, and it showed a root mean square error accuracy of 0.04. The ANN model responded to T and DO errors in a positive way and S errors in a negative way, and the ANN model was most sensitive to S errors, followed by DO and T errors. Monthly water column pHT for the period 2000–2016 was retrieved using T, S, DO, N, P and Si from the Changjiang biology Finite-Volume Coastal Ocean Model (FVCOM). The agreement is good here in winter, while the reduced performance in summer can be attributed in large part to limitations of the Changjiang biology FVCOM in simulating summertime input variables.publishedVersio

    Influence of Artery Straightening on Local Hemodynamics in Left Anterior Descending (LAD) Artery after Stent Implantation

    No full text
    Objectives. The study investigates local hemodynamic environment changes caused by straightening phenomenon and the relationship between straightening phenomenon and in-stent restenosis. Background. Intravascular intervention is an effective treatment in restoring the normal flow conditions and vascular lumen. Unfortunately, in-stent restenosis often occurs in a subset of patients after stent implantation and limits the success of stent implantation outcomes. The implanted stent usually causes artery straightening locally, rather than coinciding and adjusting to the physiological curve exactly. Artery straightening would apparently modify the artery geometry and therefore alter the local hemodynamic environment, which may result in intimal hyperplasia and restenosis after stenting implantation. Methods. In the current investigation, we verify the hypothesis that the artery straightening influences the local hemodynamic state using the different 3D CT models. Flow analysis for blood in the left anterior descending coronary artery and the straightening model is simulated numerically. Result. The current results reveal that the straightening phenomenon alters the distribution of wall shear stress and flow patterns, decreases the wall shear stress (WSS), and increases the oscillatory shear index (OSI) and the relative residence time (RRT), especially at the proximal and distal areas of stenting. Conclusions. The local straightened geometry established after stent implantation was likely to generate portions of the stenting area to a high risk of neointimal hyperplasia and subsequent restenosis

    Numerical and Experimental Investigation of Novel Blended Bifurcated Stent Grafts with Taper to Improve Hemodynamic Performance

    No full text
    The typical helical flow within the human arterial system is widely used when designing cardiovascular devices, as this helical flow can be generated using the “crossed limbs” strategy of the bifurcated stent graft (BSG) and enhanced by the tapered structure of arteries. Here, we propose the use of a deflected blended bifurcated stent graft (BBSG) with various tapers, using conventional blended BSGs with the same degree of taper as a comparison. Hemodynamic performances, including helical strength and wall shear stress- (WSS-) based indicators, were assessed. Displacement forces that may induce stent-graft migration were assessed using numerical simulations and in vitro experiments. The results showed that as the taper increased, the displacement force, helicity strength, and time-averaged wall shear stress (TAWSS) within the iliac grafts increased, whereas the oscillating shear index (OSI) and relative residence time (RRT) gradually decreased for both types of BBSGs. With identical tapers, deflected BBSGs, compared to conventional BBSGs, exhibited a wider helical structure and lower RRT on the iliac graft and lower displacement force; however, there were no differences in hemodynamic indicators. In summary, the presence of tapering facilitated helical flow and produced better hemodynamic performance but posed a higher risk of graft migration. Conventional and deflected BBSGs with taper might be the two optimal configurations for endovascular aneurysm repair, given the helical flow. The deflected BBSG provides a better configuration, compared to the conventional BBSG, when considering the reduction of migration risk
    corecore