21,471 research outputs found
Mass formula for T=0 and T=1 ground states of N=Z nuclei
An algebraic model is developed to calculate the T=0 and T=1 ground state
binding energies for N=Z nuclei. The method is tested in the sd shell and is
then extended to 28-50 shell which is currently the object of many experimental
studies.Comment: 5 figure
Mudanças climáticas e produção de hortaliças: uma visão geral.
bitstream/item/57436/1/artigo-coluna-1.pd
A Bayesian estimate of the CMB-large-scale structure cross-correlation
Evidences for late-time acceleration of the Universe are provided by multiple
probes, such as Type Ia supernovae, the cosmic microwave background (CMB) and
large-scale structure (LSS). In this work, we focus on the integrated
Sachs--Wolfe (ISW) effect, i.e., secondary CMB fluctuations generated by
evolving gravitational potentials due to the transition between, e.g., the
matter and dark energy (DE) dominated phases. Therefore, assuming a flat
universe, DE properties can be inferred from ISW detections. We present a
Bayesian approach to compute the CMB--LSS cross-correlation signal. The method
is based on the estimate of the likelihood for measuring a combined set
consisting of a CMB temperature and a galaxy contrast maps, provided that we
have some information on the statistical properties of the fluctuations
affecting these maps. The likelihood is estimated by a sampling algorithm,
therefore avoiding the computationally demanding techniques of direct
evaluation in either pixel or harmonic space. As local tracers of the matter
distribution at large scales, we used the Two Micron All Sky Survey (2MASS)
galaxy catalog and, for the CMB temperature fluctuations, the ninth-year data
release of the Wilkinson Microwave Anisotropy Probe (WMAP9). The results show a
dominance of cosmic variance over the weak recovered signal, due mainly to the
shallowness of the catalog used, with systematics associated with the sampling
algorithm playing a secondary role as sources of uncertainty. When combined
with other complementary probes, the method presented in this paper is expected
to be a useful tool to late-time acceleration studies in cosmology.Comment: 21 pages, 15 figures, 4 tables. We extended the previous analyses
including WMAP9 Q, V and W channels, besides the ILC map. Updated to match
accepted ApJ versio
Awaking the vacuum with spheroidal shells
It has been shown that well-behaved spacetimes may induce the vacuum
fluctuations of some nonminimally coupled free scalar fields to go through a
phase of exponential growth. Here, we discuss this mechanism in the context of
spheroidal thin shells emphasizing the consequences of deviations from
spherical symmetry.Comment: 10 pages, 7 figures. Minor changes, version published on Phys. Rev.
Spin-polarized transport in ferromagnetic multilayered semiconductor nanostructures
The occurrence of inhomogeneous spin-density distribution in multilayered
ferromagnetic diluted magnetic semiconductor nanostructures leads to strong
dependence of the spin-polarized transport properties on these systems. The
spin-dependent mobility, conductivity and resistivity in
(Ga,Mn)As/GaAs,(Ga,Mn)N/GaN, and (Si,Mn)/Si multilayers are calculated as a
function of temperature, scaled by the average magnetization of the diluted
magnetic semiconductor layers. An increase of the resistivity near the
transition temperature is obtained. We observed that the spin-polarized
transport properties changes strongly among the three materials.Comment: 3 pages, 4 figure
Dynamics and stability of Bose-Einstein solitons in tilted optical lattices
Bloch oscillations of Bose-Einstein condensates realize sensitive matter-wave
interferometers. We investigate the dynamics and stability of bright-soliton
wave packets in one-dimensional tilted optical lattices with a modulated
mean-field interaction . By means of a time-reversal argument, we prove
the stability of Bloch oscillations of breathing solitons that would be
quasistatically unstable. Floquet theory shows that these breathing solitons
can be more stable against certain experimental perturbations than rigid
solitons or even non-interacting wave packets.Comment: final, published versio
Cosmological constant constraints from observation-derived energy condition bounds and their application to bimetric massive gravity
Among the various possibilities to probe the theory behind the recent
accelerated expansion of the universe, the energy conditions (ECs) are of
particular interest, since it is possible to confront and constrain the many
models, including different theories of gravity, with observational data. In
this context, we use the ECs to probe any alternative theory whose extra term
acts as a cosmological constant. For this purpose, we apply a model-independent
approach to reconstruct the recent expansion of the universe. Using Type Ia
supernova, baryon acoustic oscillations and cosmic-chronometer data, we perform
a Markov Chain Monte Carlo analysis to put constraints on the effective
cosmological constant . By imposing that the cosmological
constant is the only component that possibly violates the ECs, we derive lower
and upper bounds for its value. For instance, we obtain that and within,
respectively, and confidence levels. In addition, about
30\% of the posterior distribution is incompatible with a cosmological
constant, showing that this method can potentially rule it out as a mechanism
for the accelerated expansion. We also study the consequence of these
constraints for two particular formulations of the bimetric massive gravity.
Namely, we consider the Visser's theory and the Hassan and Roses's massive
gravity by choosing a background metric such that both theories mimic General
Relativity with a cosmological constant. Using the
observational bounds along with the upper bounds on the graviton mass we obtain
constraints on the parameter spaces of both theories.Comment: 11 pages, 4 figures, 1 tabl
- …