10,857 research outputs found

    Energy Loss in Nuclear Drell-Yan Process

    Get PDF
    By means of the nuclear parton distributions which can be used to provide a good explanation for the EMC effect in the whole x range, we investigate the energy loss effect in nuclear Drell-Yan process. When the cross section of lepton pair production is considered varying with the center-of-mass energy of the nucleon-nucleon collision, we find that the nuclear Drell-Yan(DY) ratio is suppressed due to the energy loss, which balances the overestimate of the DY ratio only in consideration of the effect of nuclear parton distributions.Comment: 10 pages, LaTeX, 1 ps figures, To appear in Eur. Phys. J.

    Spin Correlations in top quark pair production near threshold at the e−e+ e^- e^+ Linear Collider

    Full text link
    We investigate the spin correlations in top quark pair production near threshold at the e−e+ e^- e^+ linear collider. Comparing with the results above the threshold region, we find that near the threshold region the off-diagonal basis, the optimized decomposition of the top quark spins above the threshold region, does not exist, and the beamline basis is the optimal basis, in which there are the dominant spin components: the up-down (UD) component for eL−e+e_L^- e^+ scattering and the down-up (DU) component for eR−e+e_R^- e^+ scattering can make up more than 50% of the total cross section, respectively.Comment: 12 pages, 3 figures, minor modification

    Next-to-leading order QCD predictions for associated production of top squarks and charginos at the CERN LHC

    Full text link
    We present the calculations of the complete next-to-leading order (NLO) inclusive total cross sections for the associated production processes pp→t~iχ~k−+Xpp\to \tilde{t}_i\tilde{\chi}_k^-+X in the Minimal Supersymmetric Standard Model at the CERN Large Hadron Collider. Our calculations show that the total cross sections for the t~1χ~1−\tilde{t}_1\tilde{\chi}_1^- production for the lighter top squark masses in the region 100 GeV <mt~1<< m_{\tilde{t}_1}< 160 GeV can reach 1 pb in the favorable parameter space allowed by the current precise experiments, and in other cases the total cross sections generally vary from 10 fb to several hundred fb except both mt~1>m_{\tilde{t}_1}> 500 GeV and the t~2χ~2−\tilde{t}_2\tilde{\chi}_2^- production channel. Moreover, we find that the NLO QCD corrections in general enhance the leading order total cross sections significantly, and vastly reduce the dependence of the total cross sections on the renormalization/factorization scale, which leads to increased confidence in predictions based on these results.Comment: 42 pages, 13 figures, RevTex4. Journal-ref adde

    Transverse momentum resummation in soft-collinear effective theory

    Full text link
    We present a universal formalism for transverse momentum resummation in the view of soft-collinear effective theory (SCET), and establish the relation between our SCET formula and the well known Collins-Soper-Sterman's pQCD formula at the next-to-leading logarithmic order (NLLO). We also briefly discuss the reformulation of joint resummation in SCET.Comment: 23 pages, 7 figures; version to appear in Phys. Rev.
    • …
    corecore