46 research outputs found
Organized sport participation is associated with higher levels of overall health-related physical activity in children (CHAMPS Study-DK)
Introduction
Many children fail to meet international guideline recommendations for health-related activity (≥60 minutes/day of moderate-to-vigorous physical activity [MVPA]), and intervention studies to date have reported negligible effects.
Objective
Explore the associations of organized leisure-time sport participation with overall physical activity levels and health-related physical activity guideline concordance.
Methods
This prospective cohort study was nested in the Childhood Health, Activity, and Motor Performance School Study Denmark. Study participants were a representative sample of 1124 primary school students. Organized leisure-time sport participation was reported via text messaging and physical activity was objectively measured over seven days with accelerometry. Associations between sport participation and physical activity level were explored with multilevel mixed-effects regression models and reported with beta coefficients (b) and adjusted odds ratios (aOR).
Results
Participants were 53% female, with mean(SD) age = 8.4(1.4) years. Boys were more active than girls (p<0.001), and physical activity levels and guideline concordance decreased with age (p<0.001). Soccer participation at any frequency was associated with greater overall MVPA (b[95% CI] = 0.66[0.20,1.13] to 2.44[1.44,3.44]). Depending on participation frequency, this equates to 5–20 minutes more MVPA on the average day and 3 to 15 fold increased odds of achieving recommended levels of health-related physical activity (aOR[95%CI] = 3.04[1.49,6.19] to 14.49[1.97,106.56]). Similar associations were identified among children playing handball at least twice per week. Relationships with other sports (gymnastics, basketball, volleyball) were inconsistent.
Conclusions
Many children, particularly girls and those in higher grade levels do not adhere to health-related physical activity recommendations. Organized leisure-time sport participation may be a viable strategy to increase overall health-related physical activity levels and international guideline concordance in children
Energy-Momentum Localization for a Space-Time Geometry Exterior to a Black Hole in the Brane World
In general relativity one of the most fundamental issues consists in defining
a generally acceptable definition for the energy-momentum density. As a
consequence, many coordinate-dependent definitions have been presented, whereby
some of them utilize appropriate energy-momentum complexes. We investigate the
energy-momentum distribution for a metric exterior to a spherically symmetric
black hole in the brane world by applying the Landau-Lifshitz and Weinberg
prescriptions. In both the aforesaid prescriptions, the energy thus obtained
depends on the radial coordinate, the mass of the black hole and a parameter
, while all the momenta are found to be zero. It is shown that for
a special value of the parameter , the Schwarzschild space-time
geometry is recovered. Some particular and limiting cases are also discussed.Comment: 10 pages, sections 1 and 3 slightly modified, references modified and
adde
Einstein energy associated with the Friedmann -Robertson -Walker metric
Following Einstein's definition of Lagrangian density and gravitational field
energy density (Einstein, A., Ann. Phys. Lpz., 49, 806 (1916); Einstein, A.,
Phys. Z., 19, 115 (1918); Pauli, W., {\it Theory of Relativity}, B.I.
Publications, Mumbai, 1963, Trans. by G. Field), Tolman derived a general
formula for the total matter plus gravitational field energy () of an
arbitrary system (Tolman, R.C., Phys. Rev., 35(8), 875 (1930); Tolman, R.C.,
{\it Relativity, Thermodynamics & Cosmology}, Clarendon Press, Oxford, 1962));
Xulu, S.S., arXiv:hep-th/0308070 (2003)). For a static isolated system, in
quasi-Cartesian coordinates, this formula leads to the well known result , where is the
determinant of the metric tensor and is the energy momentum tensor of
the {\em matter}. Though in the literature, this is known as "Tolman Mass", it
must be realized that this is essentially "Einstein Mass" because the
underlying pseudo-tensor here is due to Einstein. In fact, Landau -Lifshitz
obtained the same expression for the "inertial mass" of a static isolated
system without using any pseudo-tensor at all and which points to physical
significance and correctness of Einstein Mass (Landau, L.D., and Lifshitz,
E.M., {\it The Classical Theory of Fields}, Pergamon Press, Oxford, 2th ed.,
1962)! For the first time we apply this general formula to find an expression
for for the Friedmann- Robertson -Walker (FRW) metric by using the same
quasi-Cartesian basis. As we analyze this new result, physically, a spatially
flat model having no cosmological constant is suggested. Eventually, it is seen
that conservation of is honoured only in the a static limit.Comment: By mistake a marginally different earlier version was loaded, now the
journal version is uploade
Distribution of Energy-Momentum in a Schwarzschild-Quintessence Space-time Geometry
An analysis of the energy-momentum localization for a four-dimensional\break
Schwarzschild black hole surrounded by quintessence is presented in order to
provide expressions for the distributions of energy and momentum. The
calculations are performed by using the Landau-Lifshitz and Weinberg
energy-momentum complexes. It is shown that all the momenta vanish, while the
expression for the energy depends on the mass of the black hole, the state
parameter and the normalization factor . The special case of
is also studied, and two limiting cases are examined.Comment: 9 page
Charged Dilaton, Energy, Momentum and Angular-Momentum in Teleparallel Theory Equivalent to General Relativity
We apply the energy-momentum tensor to calculate energy, momentum and
angular-momentum of two different tetrad fields. This tensor is coordinate
independent of the gravitational field established in the Hamiltonian structure
of the teleparallel equivalent of general relativity (TEGR). The spacetime of
these tetrad fields is the charged dilaton. Our results show that the energy
associated with one of these tetrad fields is consistent, while the other one
does not show this consistency. Therefore, we use the regularized expression of
the gravitational energy-momentum tensor of the TEGR. We investigate the energy
within the external event horizon using the definition of the gravitational
energy-momentum.Comment: 22 Pages Late
The Energy of Regular Black Hole in General Relativity Coupled to Nonlinear Electrodynamics
According to the Einstein, Weinberg, and M{\o}ller energy-momentum complexes,
we evaluate the energy distribution of the singularity-free solution of the
Einstein field equations coupled to a suitable nonlinear electrodynamics
suggested by Ay\'{o}n-Beato and Garc\'{i}a. The results show that the energy
associated with the definitions of Einstein and Weinberg are the same, but
M{\o}ller not. Using the power series expansion, we find out that the first two
terms in the expression are the same as the energy distributions of the
Reissner-Nordstr\"{o}m solution, and the third term could be used to survey the
factualness between numerous solutions of the Einstein field eqautions coupled
to a nonlinear electrodynamics.Comment: 11 page
Repositioning of the global epicentre of non-optimal cholesterol
High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.</p