398 research outputs found

    IN VITRO FERROPORTIN EXPRESSION IN NON-TRANSFUSION DEPENDENT THALASSEMIA DURING ERYTHROID DIFFERENTIATION

    Get PDF
    INTRODUZIONE Le \u3b2-talassemie sono una delle malattie genetiche pi\uf9 frequenti in tutto il mondo con 270 milioni di portatori e 350.000 nuovi nati affetti all\u2019anno. Questa malattia \ue8 geneticamente caratterizzata dalla perdita di produzione della catena \u3b2 globinica dell'emoglobina adulta, dovuta a diverse mutazioni nel gene della \u3b2-globina. Poich\ue9 il gene beta \ue8 espresso su entrambi i cromosomi 11, possiamo avere due differenti tipi (e con differente gravit\ue0) di beta talassemia a seconda dell\u2019assenza di entrambi o di un solo gene della beta globina: nel primo caso si ha la \u3b2 talassemia MAJOR o trasfusione dipendente, nel secondo caso si ha la \u3b2 talassemia MINOR o INTERMEDIA trasfusione indipendente. I nostri studi si concentrano su quest\u2019ultima. L'assenza della catena \u3b2 globina comporta diverse conseguenze per l'organismo come: - Eritropoiesi inefficace - Il sovraccarico di ferro - Il danno ossidativo Finora sono stati condotti molti studi in diversi campi (genomico, proteomico e nel metabolismo ferro) per garantire una maggiore comprensione di questa malattia. Recentemente si \ue8 scoperta una nuova proteina che potrebbe essere un eventuale regolatore o responsabile del sovraccarico di ferro nella \u3b2 - talassemia; questa molecola \ue8 la ferroportina. La Ferroportina (FPN) \ue8 l'unico esportatore di ferro finora conosciuto. Essa \ue8 espressa in diversi tipi di cellule, tra cui gli enterociti duodenali, gli epatociti, i macrofagi e gli eritroblasti. Pochi anni fa, \ue8 stata segnalata l'esistenza di due trascritti alternativi della FPN con o senza le Iron Responsive Elements (IRE) sul loro promotore (FPN1A e FPN1B rispettivamente). L'espressione delle diverse isoforme della ferroportina nonch\ue9 i meccanismi che la regolano nelle cellule eritroidi della \u3b2 talassemia non-trasfusione dipendente (NTDT) non sono ancora noti. SCOPO Studiare il profilo di espressione delle due isoforme della ferroportina durante il differenziamento eritroide in colture controllo e di NTDT e chiarire i meccanismi che regolano la loro espressione. MATERIALI E METODI Per questi studi \ue8 stato usato un modello di eritropoiesi in vitro derivato da cellule CD34+ provenienti da sangue periferico di volontari sani (controllo) e pazienti NTDT. Il profilo dell'espressione genica delle due isoforme (FPN1A e FPN1B) \ue8 stato valutato allo stadio basale (giorno 0) e al giorno 7 e 14 della cultura (stadio di pro eritroblasti e di eritrociti ortocromatici rispettivamente) mediante la tecnica di real-time PCR (2-dCt). La percentuale relativa di ogni isoforma \ue8 stata calcolata sulla base dell\u2019espressione della ferroportina totale (FPN1A + FPN1B). La concentrazione di ferro intra and extracellulare \ue8 stata analizzata utilizzando un kit di Ferro Assay (Biovision). In esperimenti indipendenti, colture di controllo e NTDT sono state trattate con: ferro (Ferro Ammonio Citrato [FAC] 100\u3bcM), Desferal (DFO, 4\u3bcM), protoporfirina (SNPP IX 50-20\u3bcM), eme (Emina 20-10\u3bcM) o perossido di idrogeno (H2O2 0,1mM) per indagare su un possibile ruolo di questi composti nella regolazione della ferroportina. L\u2019espressione della FPN \ue8 stata valutata al 14esimo giorno in condizioni standard e nei trattati mediante la tecnica di real-time PCR (2-ddCt; cellule non trattate utilizzate come calibratore). RISULTATI L'espressione ferroportina aumenta durante il differenziamento eritroide, raggiungendo il livello massimo di espressione allo stadio di eritroblasti (giorno 14 di coltura) sia nel controllo sia negli NTDT. La FPN1A \ue8 l'isoforma pi\uf9 espressa in entrambe le condizioni. La sua espressione \ue8 pi\uf9 elevata negli stadi iniziali e finali dell\u2019eritropoiesi (giorno 0 e 14), mentre l'espressione della FPN1B \ue8 maggiore nella fase intermedia di differenziamento eritroide (giorno 7). Degno di nota, l'espressione della FPN1B, anche se inferiore rispetto alla 1A, \ue8 significativamente maggiore nelle culture NTDT rispetto ai controlli, in particolare al giorno 14. La concentrazione di ferro intracellulare \ue8 diminuita in modo significativo durante il differenziamento eritroide (dal giorno 7 al giorno 14), sia nei controlli sia negli NTDT, tuttavia, al giorno 7 (stadio di eritroblasti) i livelli di ferro nelle culture NTDT sono notevolmente inferiori rispetto ai controlli. L'aggiunta di FAC, DFO, SnPP IX ed Emina nei controlli e nelle colture di NTDT non ha modificato l'espressione della ferroportina rispetto ai non trattati. L\u2019H2O2 aggiunto ai controlli aumenta l'espressione di entrambe le isoforme della ferroportina (FPN1A: cellule non trattate: 1; H2O2: 1.33 FPN1B: cellule non trattate: 1; H2O2: 2.04). I livelli di ferro intra ed extracellulari riflettono i risultati genetici: c'\ue8 stato un aumento di ferro extracellulare causa di un aumento di espressione FPN. CONCLUSIONI L'espressione della ferroportina aumenta durante il differenziamento eritroide sia nei controlli sia nelle culture NTDT, suggerendo il suo ruolo nell\u2019esportare il ferro intracellulare in eccesso. In entrambe le condizioni, la FPN1A \ue8 l'isoforma pi\uf9 espressa. Tuttavia, l'espressione dell\u2019isoforma 1B non responsiva al ferro, anche se minore rispetto a FPN1A, \ue8 significativamente maggiore nei NTDT rispetto ai CTRL. In colture di controllo, l\u2019espressione della FPN, ed in particolare dell\u2019isoforma 1B, sembra essere regolata dall\u2019aggiunta di H2O2. Questi dati suggeriscono che lo stress ossidativo, particolarmente elevato nelle NTDT, potrebbe essere uno dei principali regolatori dell\u2019espressione dell\u2019isoforma 1B, generando cos\uec un\u2019importante esportazione di ferro dalle cellule NTDT.INTRODUCTION \u3b2-Thalassemias are one of the most frequent genetic disorders worldwide with 270 million of carriers and 350.000 affected new-borns per year. This disease is genetically characterized by the loss of production of the \u3b2 globin chain of the adult haemoglobin, due to several mutation within the beta globin gene. Since the beta gene is expressed on both the chromosomes 11, we can have two different type (and severity) of beta thalassemia depending on the absence of both or just one beta gene: in the first case we have the \u3b2 thalassemia MAJOR transfusion dependent, in the second case we have the \u3b2 thalassemia MINOR or INTERMEDIA, transfusion independent. Our studies are focused on the last one. The absence of the \u3b2 globin chain implies different consequences for the organism like as: - Ineffective erythropoiesis - Iron overload - Oxidative damage Many studies have been conducted so far in different fields (genomic, protein expression and regulation, iron metabolism) in order to guarantee a major comprehension of this disease. Recently a new protein came out as a possible regulator/responsible for the iron overload in \u3b2 thalassemia; this molecule is the FERROPORTIN. Ferroportin (FPN) is the only know iron exporter protein. It is expressed in different cell types including duodenal enterocytes, hepatocytes, macrophages and erythroblast cells. Few years ago it has been reported the existence of two alternative transcripts of FPN with or without an iron \u2013 responsive element (IRE) on their promoter (FPN1A and FPN1B respectively). The expression of the different ferroportin isoforms as well as the mechanisms regulating their expression in erythroid cells in non-transfusion dependent \u3b2 thalassemia syndromes (NTDT) are not known yet. AIM To investigate the expression profile of ferroportin isoforms during erythroid differentiation in control and NTDT cell cultures and to elucidate the mechanisms regulating their expression. MATERIALS AND METHODS An in vitro model of erythropoiesis derived from human peripheral CD34+ cells from healthy volunteers (control) and NTDT patients was used. The expression profiling of FPN isoforms (FPN1A and FPN1B) was evaluated at baseline (day 0) and at day 7 and 14 of culture (pro erythroblasts and orthochromatic erythroblasts stage respectively) by real 12time PCR (2 12dCt). The relative percentage of each isoform was calculated based on total ferroportin expression (FPN1A+FPN1B). The intracellular iron concentration was analyzed by using an Iron Assay Kit (Biovision). In independent experiments, control and NTDT cultures were treated with iron (Ferric Ammonium Citrate [FAC] 100\ub5M), Desferal (DFO, 4\ub5M), protoporfirin (SnPP IX 50-20\ub5M), heme (Hemin 20-10\ub5M) or hydrogen peroxide (H2O2 0.1mM) to investigate a possible role of these compounds in ferroportin regulation; FPN expression was evaluated at day 14 in standard and treated conditions by real 12time PCR (2 12ddCt; untreated cells used as calibrator). RESULTS The ferroportin expression increased during erythroid differentiation; with the highest level at the end of erythroblasts stage (day 14 of cultures) both in control and NTDT cultures. The FPN1A was the more expressed isoform in both conditions. Its expression was higher at the initial and final steps of erythropoiesis (day 0 and 14), while FPN1B expression was higher at the intermediate erythroblast stages (day 7). Noteworthy, the FPN1B expression, although lower compared to FPN1A, was significantly higher in NTDT cultures than in control ones, particularly at day 14. The intracellular iron concentration decreased significantly during erythroid differentiation (from day 7 to day 14) both in control and NTDT cultures, however, at day 7 (early erythroblasts stage) the iron levels in NTDT cultures were notably lower than in controls. The addition of FAC, DFO, SnPP IX and Hemin in control and NTDT cultures did not modify the ferroportin expression compared to untreated. H2O2 added to control cells increased the expression of both ferroportin isoforms (FPN1A: untreated cells: 1; H2O2: 1.33. FPN1B: untreated cells: 1; H2O2: 2.04). The intra and extracellular iron levels reflected the genetic results: there was an increase of extracellular iron due to an increase of FPN expression. CONCLUSIONS The ferroportin expression increases during erythroid differentiation either in control than in NTDT cultures, suggesting its role in exporting the excess intracellular iron. In both conditions, the FPN1A is the more expressed isoform. However, the expression of the non 12iron responsive FPN1B isoform, although lower compared to FPN1A, is significantly higher in NTDT than in control conditions. In control cultures, FPN expression, and particularly the FPN1B isoform, seems to be up regulated by H2O2 addition. These data suggest that the oxidative stress, notably higher in NTDT conditions, could be one of the major regulator of FPN1B expression, with a major iron export from NTDT erythroblast cells

    Polymorphisms of microsomal epoxyde hydrolase gene and severity of HCV-related liver disease.

    Get PDF

    Hepatitis C virus genotypes and risk of cirrhosis in Southern Italy.

    Get PDF

    Improving Fission-product Decay Data for Reactor Applications: Part I -- Decay Heat

    Full text link
    Effort has been expended to assess the relative merits of undertaking further decay-data measurements of the main fission-product contributors to the decay heat of neutron-irradiated fissile fuel and related actinides by means of Total Absorption Gamma-ray Spectroscopy (TAGS/TAS) and Discrete Gamma-ray Spectroscopy (DGS). This review has been carried out following similar work performed under the auspices of OECD/WPEC-Subgroup 25 (2005-2007) and the International Atomic Energy Agency (2010, 2014), and various highly relevant TAGS measurements completed as a consequence of such assessments. We present our recommendations for new decay-data evaluations, along with possible requirements for total absorption and discrete high-resolution gamma-ray spectroscopy studies that cover approximately 120 fission products and various isomeric states.Comment: Submitted to European Physical Journal

    EFECTOS DEL ESTRÉS COMBINADO DE ALTA TEMPERATURA Y DEFICIENCIA DE AGUA EN LA FLORACIÓN FEMENINA, MASCULINA Y EL NÚMERO DE GRANOS EN MAÍZ.

    Get PDF
    Extremely high temperatures and water deficits commonly affect crop productivity worldwide (Prasad et al., 2008; Lobell et al., 2013). The frequency of these events may increase as a result of global warming (Rezaei et al., 2015; IPCC, 2023; Heino et al., 2023) impacting to a greater extent in low latitudes with high probability of heat stress during crop growth and development (Easterling et al., 1997). Feng et al. (2020), in a global analysis, determined that Argentina is among the seven producing countries with the highest probability of occurrence of events with high temperatures and water deficit. Thus, the increase in the frequency and magnitude of heat stress (TS) due to high temperature and water deficit (DH) are among the main abiotic constraints with considerable adverse effects on maize yield (Lobell and Field, 2007; Hatfield et al., 2011). The number of grains (NG) is the component that explains most of the variations in maize yield (Tollenaar et al., 1992). The most critical time for NG determination in maize is around flowering (e.g., Tollenaar et al., 1992; Carrera et al., 2023). In particular, it was shown that the effects of ET on NG reduction were greatest between stigma emission and 15-17 days after stigma emission (Rattalino Edreira and Otegui, 2013; Neiff et al., 2016; Shim et al., 2017), coinciding with the period of maximum susceptibility to DH (Ouattar et al., 1987). Both the occurrence of ET or DH often result in the lag between the anthesis-stigmas interval (Cairns et al., 2013; Trachsel et al., 2016; Wang et al. 2019), leading to NG declines. Episodes of ET often reduce the pollen release period (PLP) and its daily production (Wang, 2019), as well as the % of viable pollen grains (Alam et al., 2017).Las temperaturas extremadamente altas y el déficit hídrico comúnmente afectan la productividad de los cultivos en el mundo (Prasad et al., 2008; Lobell et al., 2013). La frecuencia de estos eventos puede aumentar como resultado del calentamiento global (Rezaei et al., 2015; IPCC, 2023; Heino et al., 2023) impactando en mayor medida en latitudes bajas con alta probabilidad de golpes de calor durante el crecimiento y desarrollo de los cultivos (Easterling et al., 1997). Feng et al. (2020), en un análisis global, determinaron que Argentina se encuentra dentro de los siete países productores que presentan una mayor probabilidad de ocurrencia de eventos con altas temperaturas y déficit hídrico. Así, el aumento de la frecuencia y la magnitud del estrés térmico (ET) por alta temperatura y déficit hídrico (DH) son unas de las principales limitantes abióticas con efectos adversos considerables en el rendimiento de maíz (Lobell y Field, 2007; Hatfield et al., 2011). El número de granos (NG) es el componente que explica en mayor medida las variaciones en rendimiento de maíz (Tollenaar et al., 1992). El momento más crítico para la determinación del NG en maíz es alrededor de su floración (e.g., Tollenaar et al., 1992; Carrera et al., 2023). En particular se demostró que los efectos del ET sobre la reducción en NG fueron mayores entre la emisión de estigmas y 15-17 días posteriores a la misma (Rattalino Edreira y Otegui, 2013; Neiff et al., 2016; Shim et al., 2017), coincidente con el periodo de máxima susceptibilidad al DH (Ouattar et al., 1987). Tanto la ocurrencia de ET o DH a menudo producen el desfase entre el intervalo antesis-estigmas (Cairns et al., 2013; Trachsel et al., 2016; Wang et al. 2019), lo cual conlleva a disminuciones del NG. Episodios de ET a menudo reducen el periodo de liberación de polen (PLP) y su producción diaria (Wang, 2019), como así también el % de granos de polen viables (Alam et al., 2017). Además, se han reportado reducciones del número total de flores pistiladas y disminuciones de estigmas exertos por fuera de las chalas atribuibles a episodios de ET con diferencias genotípicas (Rattalino Edreira et al. 2011; Liu et al., 2020). A menudo, los genotipos con germoplasma tropical han presentado una mayor tolerancia al ET (Rattalino Edreira y Otegui, 2012; Mayer et al., 2016) que los híbridos templados. Sin embargo, gran parte de los híbridos sembrados en el Nordeste Argentino poseen genética de origen templada. Por su parte, el DH durante el PC también produce importantes reducciones en el NG como consecuencia delretraso en la emergencia de los estigmas y el fallo en el cuaje de los granos (i.e., aborto; Westgate y Boyer, 1986; Bassetti y Westgate, 1993). La principal causa de aborto de granos ocurre por la escasez de asimilados hacia los ovarios fecundados (Westgate y Boyer 1986; McLaughlin y Boyer, 2004) que son resultado de las bajas tasas de crecimiento (Andrade et al., 2002; Nagore et al., 2017). Más aún, la aparición y el número total de estigmas y su relación con el porcentaje de cuaje fueron estudiados para estreses individuales por ET (Rattalino et al., 2011), DH (Otegui et al., 1995) y nitrógeno (Rossini et al., 2020), no existiendo estudios a campo que proporcionen información bajo ET*DH y que contrasten genotipos de distinto origen (templado vs. subtropical). La mayoría de los estudios en maíz se han centrado en los efectos del ET y DH como factores de estrés individuales. Sin embargo, varios estudios revelan que los efectos combinados del ET*DH reducen en mayor medida el rendimiento del cultivo maíz respecto a estreses individuales (Neiff et al., 2015; Meseka et al., 2018; Hussain et al., 2019; Nelimor et al., 2019). Además, la tolerancia de híbridos de maíz a estreses individuales no confirió tolerancia al ET*DH combinado (Mittler et al., 2006; Cairns et al., 2013). Por lo tanto, y considerando la escasez de estudios en condiciones de campo que combinen la incidencia de ET*DH y que contrasten genotipos de distinto origen, este trabajo tiene como objetivos: (i) caracterizar la floración masculina (período de liberación, producción y viabilidad de polen) y femenina (número de estigmas totales y exertos), (ii) cuantificar el intervalo antesis-emisión estigmas y (iii)establecer el impacto en el número de granos y su relación con las variables mencionadas

    Shell model in the complex energy plane and two-particle resonances

    Get PDF
    An implementation of the shell-model to the complex energy plane is presented. The representation used in the method consists of bound single-particle states, Gamow resonances and scattering waves on the complex energy plane. Two-particle resonances are evaluated and their structure in terms of the single-particle degreees of freedom are analysed. It is found that two-particle resonances are mainly built upon bound states and Gamow resonances, but the contribution of the scattering states is also important.Comment: 20 pages, 9 figures, submitted to Phys.Rev.
    corecore