109 research outputs found
Eukaryotic and prokaryotic phytochelatin synthases differ less in functional terms than previously thought: a comparative analysis of Marchantia polymorpha and Geitlerinema sp. PCC 7407
This paper reports functional studies on the enzyme phytochelatin synthase in the liverwortMarchantia polymorphaand the cyanobacteriumGeitlerinemasp. strain PCC 7407. In vitro activity assays in control samples (cadmium-untreated) showed that phytochelatin synthase was constitutively expressed in both organisms. In the presence of 100 mu M cadmium, in both the liverwort and the cyanobacterium, the enzyme was promptly activated in vitro, and produced phytochelatins up to the oligomer PC4. Likewise,in vivoexposure to 10-36 mu M cadmium for 6-120 h induced in both organisms phytochelatin synthesis up to PC4. Furthermore, the glutathione (GSH) levels inM. polymorphawere constitutively low (compared with the average content in higher plants), but increased considerably under cadmium stress. Conversely, the GSH levels inGeitlerinemasp. PCC 7407 were constitutively high, but were halved under metal treatments. At odds with former papers, our results demonstrate that, as inM. polymorphaand other plants, the cyanobacterial phytochelatin synthase exposed to cadmium possesses manifest transpeptidasic activity, being able to synthesize phytochelatins with a degree of oligomerization higher than PC2. Therefore, prokaryotic and eukaryotic phytochelatin synthases differ less in functional terms than previously thought
Ancestral function of the phytochelatin synthase C-terminal domain in inhibition of heavy metal-mediated enzyme overactivation
Phytochelatin synthases (PCSs) play essential roles in detoxification of a broad range of heavy metals in plants and
other organisms. Until now, however, no PCS gene from liverworts, the earliest branch of land plants and possibly the
first one to acquire a PCS with a C-terminal domain, has been characterized. In this study, we isolated and functionally characterized the first PCS gene from a liverwort, Marchantia polymorpha (MpPCS). MpPCS is constitutively expressed in all organs examined, with stronger expression in thallus midrib. The gene expression is repressed by Cd2+
and Zn2+. The ability of MpPCS to increase heavy metal resistance in yeast and to complement cad1-3 (the null mutant
of the Arabidopsis ortholog AtPCS1) proves its function as the only PCS from M. polymorpha. Site-directed mutagenesis of the most conserved cysteines of the C-terminus of the enzyme further uncovered that two twin-cysteine motifs
repress, to different extents, enzyme activation by heavy metal exposure. These results highlight an ancestral function
of the PCS elusive C-terminus as a regulatory domain inhibiting enzyme overactivation by essential and non-essential
heavy metals. The latter finding may be relevant for obtaining crops with decreased root to shoot mobility of cadmium,
thus preventing its accumulation in the food chain
Retaining unlogged patches in Mediterranean oak forests may preserve threatened forest macrolichens
Forest management practices may heavily impact epiphytic (tree inhabiting)
organisms. Retaining tree patches and buffer strips in logged stands may contribute
to preserve ecosystem functioning and the vitality of epiphytic organisms
in managed forests. To test these statements, the threatened forest
macrolichen Lobaria pulmonaria (L.) Hoffm. was used as a model species,
since it is a “flag” indicator species of forest ecosystems with long ecological
continuity. To this purpose, photosynthetic performances, thallus anatomy and
water holding capacity (WHC) of samples of L. pulmonaria were investigated in
a logged mixed oak forest (Tuscany, Italy), confronting lichen thalli from retained-
forest patches and retained-isolated trees, 18 months after logging.
Compared with those of retained-forest patches, thalli on the trunks of retained-
isolated trees were thinner and showed lower vitality (as indicated by
the potential quantum yield of primary photochemistry – FV/FM and the index
of overall photosynthetic performance – PIABS), as well as lower water holding
capacity. In contrast, thalli from forest patches had performances comparable
to those of healthy samples from unlogged forests
Correlation between hormonal homeostasis and morphogenic responses in Arabidopsis thaliana seedlings growing in a Cd/Cu/Zn multi-pollution context
To date, almost no information is available in roots and shoots of the model plant Arabidopsis thaliana about the hierarchic relationship between metal accumulation, phytohormone levels, and glutathione/phytochelatin content, and how this relation affects root development. For this purpose, specific concentrations of cadmium, copper and zinc, alone or in triple combination, were supplied for 12 days to in vitro growing seedlings. The accumulation of these metals was measured in roots and shoots, and a significant competition in metal uptake was observed. Microscopic analyses revealed that root morphology was affected by metal exposure, and that the levels of trans-zeatin riboside, dihydrozeatin riboside, indole-3-acetic acid, and the auxin/cytokinin ratio varied accordingly. By contrast, under metal treatments, minor modifications in gibberellic acid and abscisic acid levels occurred. RT-PCR analysis of some genes involved in auxin and cytokinin synthesis (e.g., AtNIT in roots and AtIPT in shoots) showed on average a metal up-regulated transcription. The production of thiol-peptides was induced by all the metals, alone or in combination, and the expression of the genes involved in thiol-peptide synthesis (AtGSH1, AtGSH2, AtPCS1 and AtPCS2) was not stimulated by the metals, suggesting a full post-transcriptional control. Results show that the Cd/Cu/Zn-induced changes in root morphology are caused by a hormonal unbalance, mainly governed by the auxin/cytokinin ratio
The Arabidopsis thaliana knockout mutant for phytochelatin synthase1 (cad1-3) Is defective in callose deposition, bacterial pathogen defense and auxin content, but shows an increased stem lignification
The enzyme phytochelatin synthase (PCS) has long been studied with regard to its role in metal(loid) detoxification in several organisms, i.e., plants, yeasts, and nematodes. It is in fact widely recognized that PCS detoxifies a number of heavy metals by catalyzing the formation of thiol-rich oligomers, namely phytochelatins, from glutathione and related peptides. However, recent investigations have highlighted other possible roles played by the PCS enzyme in the plant cell, e.g., the control of pathogen-triggered callose deposition. In order to examine novel aspects of Arabidopsis thaliana PCS1 (AtPCS1) functions and to elucidate its possible roles in the secondary metabolism, metabolomic data of A. thaliana wild-type and cad1-3 mutant were compared, the latter lacking AtPCS1. HPLC-ESI-MS analysis showed differences in the relative levels of metabolites from the glucosinolate and phenylpropanoid pathways between cad1-3
and wild-type plants. Specifically, in control (Cd-untreated) plants, higher levels of 4-methoxy-indol 3-ylmethylglucosinolate were found in cad1-3 plants vs. wild-type. Moreover, the cad1-3 mutant showed to be impaired in the deposit of callose after Cd exposure, suggesting that AtPCS1 protects the plant against the toxicity of heavy metals not only by synthesizing PCs, but also by contributing to callose deposition. In line with the contribution of callose in counteracting Cd toxicity, we found that another callose-defective mutant, pen2-1, was more sensitive to high concentrations of Cd than wild-type plants. Moreover, cad1-3 plants were more susceptible than wild-type to the hemibiotrophic bacterial pathogen Pseudomonas syringae. The metabolome also revealed differences in the relative levels of hydroxycinnamic acids and flavonols,with consequences on cell wall properties and auxin content, respectively. First, increased lignification in the cad1-3 stems was found, probably aimed at counteracting the entry of Cd into the inner tissues. Second, in cad1-3 shoots, increased relative levels of kaempferol 3,7 dirhamnoside and quercetin hexoside rhamnoside were detected. These flavonols are endogenous inhibitors of auxin transport in planta; auxin levels in both roots and shoots of the cad1-3 mutant were in fact lower than those of the wild-type. Overall, our data highlight novel aspects of AtPCS1 functions in A. thaliana
Fusicoccin Counteracts the Toxic Effect of Cadmium on the Growth of Maize Coleoptile Segments
The effects of cadmium (Cd; 0.1–1000 μM) and fusicoccin (FC) on growth, Cd2+ content, and membrane potential (Em) in maize coleoptile segments were studied. In addition, the Em changes and accumulation of Cd and calcium (Ca) in coleoptile segments treated with Cd2+ combined with 1 μM FC or 30 mM tetraethylammonium (TEA) chloride (K+-channel blocker) were also determined. In this study, the effects of Ca2+-channel blockers [lanthanum (La) and verapamil (Ver)] on growth and content of Cd2+ and Ca2+ in coleoptile segments were also investigated. It was found that Cd at high concentrations (100 and 1000 μM) significantly inhibited endogenous growth of coleoptile segments and simultaneously measured proton extrusion. FC combined with Cd2+ counteracted the toxic effect of Cd2+ on endogenous growth and significantly decreased Cd2+ content (not the case for Cd2+ at the highest concentration) in coleoptile segments. Addition of Cd to the control medium caused depolarization of Em, the extent of which was dependent on Cd concentration and time of treatment with Cd2+. Hyperpolarization of Em induced by FC was suppressed in the presence of Cd2+ at 1000 μM but not Cd2+ at 100 μM. It was also found that treatment of maize coleoptile segments with 30 mM TEA chloride caused hyperpolarization of Em and decreased Cd2+ content in coleoptile segments, suggesting that, in the same way as for FC, accumulation of Cd2+ was dependent on plasma membrane (PM) hyperpolarization. Similar to FC, TEA chloride also decreased Ca2+ content in coleoptile segments. La and Ver combined with Cd2+ (100 μM) significantly decreased Cd content in maize coleoptile segments, but only La completely abolished the toxic effect of Cd2+ on endogenous growth and growth in the presence of FC. Taken together, these results suggest that the mechanism by which FC counteracts the toxic effect of Cd2+ (except at 1000 μM Cd2+) on the growth of maize coleoptile segments involves both stimulation of PM H+-ATPase activity by FC as well as Cd2+-permeable, voltage-dependent Ca channels, which are blocked by FC and TEA chloride-induced PM hyperpolarization
- …