8,072 research outputs found
Frequent mild head injury promotes trigeminal sensitivity concomitant with microglial proliferation, astrocytosis, and increased neuropeptide levels in the trigeminal pain system.
BACKGROUND: Frequent mild head injuries or concussion along with the presence of headache may contribute to the persistence of concussion symptoms.
METHODS: In this study, the acute effects of recovery between mild head injuries and the frequency of injuries on a headache behavior, trigeminal allodynia, was assessed using von Frey testing up to one week after injury, while histopathological changes in the trigeminal pain pathway were evaluated using western blot, ELISA and immunohistochemistry. RESULTS: A decreased recovery time combined with an increased mild closed head injury (CHI) frequency results in reduced trigeminal allodynia thresholds compared to controls. The repetitive CHI group with the highest injury frequency showed the greatest reduction in trigeminal thresholds along with greatest increased levels of calcitonin gene-related peptide (CGRP) in the trigeminal nucleus caudalis. Repetitive CHI resulted in astrogliosis in the central trigeminal system, increased GFAP protein levels in the sensory barrel cortex, and an increased number of microglia cells in the trigeminal nucleus caudalis.
CONCLUSIONS: Headache behavior in rats is dependent on the injury frequency and recovery interval between mild head injuries. A worsening of headache behavior after repetitive mild head injuries was concomitant with increases in CGRP levels, the presence of astrocytosis, and microglia proliferation in the central trigeminal pathway. Signaling between neurons and proliferating microglia in the trigeminal pain system may contribute to the initiation of acute headache after concussion or other traumatic brain injuries
A comparison of ground-based and space flight data: Atomic oxygen reactions with boron nitride and silicon nitride
The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) have been studied in low Earth orbit (LEO) flight experiments and in a ground-based simulation facility at Los Alamos National Laboratory. Both the in-flight and ground-based experiments employed the materials coated over thin (approx 250 Angstrom) silver films whose electrical resistance was measured in situ to detect penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the in-flight and ground-based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the in-flight or ground-based experiments. The ground-based results show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground-based facility in terms of reproducing LEO flight results
Centrality, system size and energy dependences of charged-particle pseudo-rapidity distribution
Utilizing the three-fireball picture within the quark combination model, we
study systematically the charged particle pseudorapidity distributions in both
Au+Au and Cu+Cu collision systems as a function of collision centrality and
energy, 19.6, 62.4, 130 and 200 GeV, in full pseudorapidity
range. We find that: (i)the contribution from leading particles to
distributions increases with the decrease of the collision
centrality and energy respectively; (ii)the number of the leading particles is
almost independent of the collision energy, but it does depend on the nucleon
participants ; (iii)if Cu+Cu and Au+Au collisions at the same
collision energy are selected to have the same , the resulting of
charged particle distributions are nearly identical, both in the
mid-rapidity particle density and the width of the distribution. This is true
for both 62.4 GeV and 200 GeV data. (iv)the limiting fragmentation phenomenon
is reproduced. (iiv) we predict the total multiplicity and pseudorapidity
distribution for the charged particles in Pb+Pb collisions at TeV. Finally, we give a qualitative analysis of the
and as function of
and from RHIC to LHC.Comment: 12 pages, 8 figure
Collective excitations in a fermion-fermion mixture with different Fermi surfaces
In this paper, collective excitations in a homogeneous fermion-fermion
mixture with different Fermi surfaces are studied. In the Fermi liquid phase,
the zero-sound velocity is found to be larger than the largest Fermi velocity.
With attractive interactions, the superfluid phase appears below a critical
temperature, and the phase mode is the low-energy collective excitation. The
velocity of the phase mode is proportional to the geometric mean of the two
Fermi velocities. The difference between the two velocities may serve as a tool
to detect the superfluid phase.Comment: 4 pages. To be published in Phys. Rev.
Phonon quarticity induced by changes in phonon-tracked hybridization during lattice expansion and its stabilization of rutile TiO
Although the rutile structure of TiO is stable at high temperatures, the
conventional quasiharmonic approximation predicts that several acoustic phonons
decrease anomalously to zero frequency with thermal expansion, incorrectly
predicting a structural collapse at temperatures well below 1000\,K. Inelastic
neutron scattering was used to measure the temperature dependence of the phonon
density of states (DOS) of rutile TiO from 300 to 1373\,K. Surprisingly,
these anomalous acoustic phonons were found to increase in frequency with
temperature. First-principles calculations showed that with lattice expansion,
the potentials for the anomalous acoustic phonons transform from quadratic to
quartic, stabilizing the rutile phase at high temperatures. In these modes, the
vibrational displacements of adjacent Ti and O atoms cause variations in
hybridization of electrons of Ti and electrons of O atoms. With
thermal expansion, the energy variation in this "phonon-tracked hybridization"
flattens the bottom of the interatomic potential well between Ti and O atoms,
and induces a quarticity in the phonon potential.Comment: 7 pages, 6 figures, supplemental material (3 figures
Quantum interference of electromagnetic fields from remote quantum memories
We observe quantum, Hong-Ou-Mandel, interference of fields produced by two
remote atomic memories. High-visibility interference is obtained by utilizing
the finite atomic memory time in four-photon delayed coincidence measurements.
Interference of fields from remote atomic memories is a crucial element in
protocols for scalable generation of multi-node remote qubit entanglement.Comment: 4 pages, 3 figure
Pressure-dependent transition from atoms to nanoparticles in magnetron sputtering: Effect on WSi2 film roughness and stress
We report on the transition between two regimes from several-atom clusters to
much larger nanoparticles in Ar magnetron sputter deposition of WSi2, and the
effect of nanoparticles on the properties of amorphous thin films and
multilayers. Sputter deposition of thin films is monitored by in situ x-ray
scattering, including x-ray reflectivity and grazing incidence small angle
x-ray scattering. The results show an abrupt transition at an Ar background
pressure Pc; the transition is associated with the threshold for energetic
particle thermalization, which is known to scale as the product of the Ar
pressure and the working distance between the magnetron source and the
substrate surface. Below Pc smooth films are produced, while above Pc roughness
increases abruptly, consistent with a model in which particles aggregate in the
deposition flux before reaching the growth surface. The results from WSi2 films
are correlated with in situ measurement of stress in WSi2/Si multilayers, which
exhibits a corresponding transition from compressive to tensile stress at Pc.
The tensile stress is attributed to coalescence of nanoparticles and the
elimination of nano-voids.Comment: 16 pages, 10 figures; v3: published versio
Thermal transistor: Heat flux switching and modulating
Thermal transistor is an efficient heat control device which can act as a
heat switch as well as a heat modulator. In this paper, we study systematically
one-dimensional and two-dimensional thermal transistors. In particular, we show
how to improve significantly the efficiency of the one-dimensional thermal
transistor. The study is also extended to the design of two-dimensional thermal
transistor by coupling different anharmonic lattices such as the
Frenkel-Kontorova and the Fermi-Pasta-Ulam lattices. Analogy between anharmonic
lattices and single-walled carbon nanotube is drawn and possible experimental
realization with multi-walled nanotube is suggested.Comment: To appear in J. Phys. Soc. Jp
Efficient electronic entanglement concentration assisted with single mobile electron
We present an efficient entanglement concentration protocol (ECP) for mobile
electrons with charge detection. This protocol is quite different from other
ECPs for one can obtain a maximally entangled pair from a pair of
less-entangled state and a single mobile electron with a certain probability.
With the help of charge detection, it can be repeated to reach a higher success
probability. It also does not need to know the coefficient of the original
less-entangled states. All these advantages may make this protocol useful in
current distributed quantum information processing.Comment: 6pages, 3figure
- …