704 research outputs found
NASA Cold Land Processes Experiment (CLPX 2002/03): ground-based and near-surface meteorological observations
A short-term meteorological database has been developed for the Cold Land Processes Experiment (CLPX). This database includes meteorological observations from stations designed and deployed exclusively for CLPXas well as observations available from other sources located in the small regional study area (SRSA) in north-central Colorado. The measured weather parameters include air temperature, relative humidity, wind speed and direction, barometric pressure, short- and long-wave radiation, leaf wetness, snow depth, snow water content, snow and surface temperatures, volumetric soil-moisture content, soil temperature, precipitation, water vapor flux, carbon dioxide flux, and soil heat flux. The CLPX weather stations include 10 main meteorological towers, 1 tower within each of the nine intensive study areas (ISA) and one near the local scale observation site (LSOS); and 36 simplified towers, with one tower at each of the four corners of each of the nine ISAs, which measured a reduced set of parameters. An eddy covariance system within the North Park mesocell study area (MSA) collected a variety of additional parameters beyond the 10 standard CLPX tower components. Additional meteorological observations come from a variety of existing networks maintained by the U.S. Forest Service, U.S. Geological Survey, Natural Resource Conservation Service, and the Institute of Arctic and Alpine Research. Temporal coverage varies from station to station, but it is most concentrated during the 2002/ 03 winter season. These data are useful in local meteorological energy balance research and for model development and testing. These data can be accessed through the National Snow and Ice Data Center Web site
Feasibility of Measuring Mean Vertical Motion for Estimating Advection
Numerous recent studies calculate horizontal and vertical advection terms for budget studies of net ecosystem exchange of carbon. One potential uncertainty in such studies is the estimate of mean vertical motion. This work addresses the reliability of vertical advection estimates by contrasting the vertical motion obtained from the standard practise of measuring the vertical velocity and applying a tilt correction, to the vertical motion calculated from measurements of the horizontal divergence of the flow using a network of towers. Results are compared for three different tilt correction methods. Estimates of mean vertical motion are sensitive to the choice of tilt correction method. The short-term mean (10 to 60 minutes) vertical motion based on the horizontal divergence is more realistic compared to the estimates derived from the standard practise. The divergence shows long-term mean (days to months) sinking motion at the site, apparently due to the surface roughness change. Because all the tilt correction methods rely on the assumption that the long-term mean vertical motion is zero for a given wind direction, they fail to reproduce the vertical motion based on the divergence
Exploring the possible role of small scale terrain drag on stable boundary layers over land
This paper addresses the possible role of unresolved terrain drag, relative to the turbulent drag on the development of the stable atmospheric boundary layer over land. Adding a first-order estimate for terrain drag to the turbulent drag appears to provide drag that is similar to the enhanced turbulent drag obtained with the so-called long-tail mixing functions. These functions are currently used in many operational models for weather and climate, although they lack a clear physical basis. Consequently, a simple and practical quasi-empirical parameterization of terrain drag divergence for use in large-scale models is proposed and is tested in a column mode. As an outcome, the cross-isobaric mass flow (a measure for cyclone filling) with the new scheme, using realistic turbulent drag, appears to be equal to what is found with the unphysical long-tail scheme. At the same time, the new scheme produces a much more realistic less-deep boundary layer than is obtained by using the long-tail mixing function
Comparison of Heat and Moisture Fluxes from a Modified Soil-plant-atmosphere Model with Observations from BOREAS
This study evaluates the prediction of heat and moisture fluxes from a new land surface scheme with eddy correlation data collected at the old aspen site during the Boreal Ecosystem-Atmosphere Study (BOREAS) in 1994. The model used in this study couples a multilayer vegetation model with a soil model. Inclusion of organic material in the upper soil layer is required to adequately simulate exchange between the soil and subcanopy air. Comparisons between the model and observations are discussed to reveal model misrepresentation of some aspects of the diurnal variation of subcanopy processes. Evapotranspiratio
Recommended from our members
Flux Sampling Errors for Aircraft and Towers
Various errors and influences leading to differences between tower- and aircraft-measured fluxes are surveyed. This survey is motivated by reports in the literature that aircraft fluxes are sometimes smaller than tower-measured fluxes. Both tower and aircraft flux errors are larger with surface heterogeneity due to several independent effects. Surface heterogeneity may cause tower flux errors to increase with decreasing wind speed.
Techniques to assess flux sampling errors are reviewed. Such error estimates suffer various degrees of inapplicability in real geophysical time series due to nonstationarity of tower time series (or inhomogeneity of aircraft data). A new measure for nonstationarity is developed that eliminates assumptions on the form of the nonstationarity inherent in previous methods. When this nonstationarity measure becomes large, the surface energy imbalance increases sharply. Finally, strategies for obtaining adequate flux sampling using repeated aircraft passes and grid patterns are outlined
Recommended from our members
Evaluating Formulations of Stable Boundary Layer Height
Stable boundary layer height h is determined from eddy correlation measurements of the vertical profiles of the buoyancy flux and turbulence energy from a tower over grassland in autumn, a tower over rangeland with variable snow cover during winter, and aircraft data in the stable marine boundary layer generated by warm air advection over a cool ocean surface in summer. A well-defined h within the tower layer at the grass site (lowest 50 m) and the snow site (lowest 30 m) was definable only about 20% of the time. In the remaining stable periods, the buoyancy flux and turbulence energy either (a) remained constant with height, indicating a deep boundary layer, (b) increased with height, or (c) varied erratically with height. Approximately one-half of the tower profiles did not fit the traditional concepts of a boundary layer. The well-defined cases of h are compared with various formulations for the equilibrium depth of the stably stratified boundary layer based on the Richardson number or surface fluxes. The diagnostic models for h have limited success in explaining both the variance and mean magnitude of h at all three sites. The surface bulk Richardson number and gradient Richardson number approaches perform best for the combined data. For the surface bulk Richardson number method, the required critical value varies systematically between sites. The surface bulk Richardson number approach is modified to include a critical value that depends on the surface Rossby number, which incorporates the influence of surface roughness and wind speed on boundary layer depth
Recommended from our members
The Cospectral Gap and Turbulent Flux Calculations
An alternative method to Fourier analysis is discussed for studying the scale dependence of variances and covariances in atmospheric boundary layer time series. Unlike Fourier decomposition, the scale dependence based on multiresolution decomposition depends on the scale of the fluctuations and not the periodicity. An example calculation is presented in detail.
Multiresolution decomposition is applied to tower datasets to study the cospectral gap scale, which is the timescale that separates turbulent and mesoscale fluxes of heat, moisture, and momentum between the atmosphere and the surface. It is desirable to partition the flux because turbulent fluxes are related to the local wind shear and temperature stratification through similarity theory, while mesoscale fluxes are not. Use of the gap timescale to calculate the eddy correlation flux removes contamination by mesoscale motions, and therefore improves similarity relationships compared to the usual approach of using a constant averaging timescale.
A simple model is developed to predict the gap scale. The goal here is to develop a practical formulation based on readily available variables rather than a theory for the transporting eddy scales. The gap scale increases with height, increases with instability, and decreases sharply with increasing stability. With strong stratification and weak winds, the gap scale is on the order of a few minutes or less. Implementation of the gap approach involves calculating an eddy correlation flux using the modeled gap timescale to define the turbulent fluctuations (e.g., w′ and T′). The turbulent fluxes (e.g., w′T′) are then averaged over 1 h to reduce random sampling errors
Recommended from our members
Quality Control and Flux Sampling Problems for Tower and Aircraft Data
A series of automated tests is developed for tower and aircraft time series to identify instrumentation problems, flux sampling problems, and physically plausible but unusual situations. The automated procedures serve as a safety net for quality controlling data. A number of special flags are developed representing a variety of potential problems such as inconsistencies between different tower levels and the flux error due to fluctuations of aircraft height.
The tests are implemented by specifying critical values for parameters representing each specific error. The critical values are developed empirically from experience of applying the tests to real turbulent time series. When these values are exceeded, the record is flagged for further inspection and comparison with the rest of the concurrent data. The inspection step is necessary to either verify an instrumentation problem or identify physically plausible behavior. The set of tests is applied to tower data from the Risø Air Sea Experiment and Microfronts95 and aircraft data from the Boreal Ecosystem–Atmosphere Study
Recommended from our members
Heat fluxes over weak SST heterogeneity
The spatial variability of turbulence and surface heat flux are examined for the case of small air-surface temperature difference and modest sea-surface temperature variability. As a result of nonlinearities in the bulk formula, the heterogeneity is predicted to shift the area-averaged heat flux toward more significant upward values compared to that computed from the usual bulk formula and the area-averaged air-surface temperature difference. This prediction is supported by a case study analysis of aircraft data collected over heterogeneity of the sea-surface temperature. Traditional approaches for computing the surface flux are found to be unreliable over surface heterogeneity where the scales of the transport vary horizontally. A method based on a multiresolution wavelet transform reveals the spatial variability of the flux for different scales. This information together with several additional scale-dependent indices are used to select the range of scales included in the flux computation. This approach provides more reliable estimates of the spatial variation of the flux, although uncertainties remain. Required improvements in observation strategies are discussed for quantitative evaluation of the bulk formula in conditions of surface heterogeneity
Recommended from our members
Air Temperature Measurement Errors in Naturally Ventilated Radiation Shields
Two sources of systematic errors are considered for estimating air temperature. The first source is ambiguity of the definition of the standardized measurement height over vegetated surfaces of varying heights. Without such a standardization, evaluation of the horizontal air temperature gradient is contaminated by the vertical variation of air temperature. This error is generally small in daytime unstable conditions, but increases with increasing stability at night. In an attempt to reduce such error, the use of the zero-plane displacement height for standardizing the measurement height is proposed.
The second source of systematic errors is radiative forcing on the sensor–shield systems. A series of experiments is performed over a grass field to investigate the radiatively induced error in the air temperature estimate by the Onset HOBO Pro thermistor in a naturally ventilated multiplate shield. The magnitude of this error is estimated by comparing air temperature measurements by a platinum resistance temperature detector (RTD) sensor in a mechanically aspirated shield. In contrast to the errors resulting from the first source, the radiatively induced error increases with increasing instability. An empirical model is developed for correcting the radiatively induced temperature error using information on wind speed and net or shortwave radiation. The robustness of the model is examined with independent data
- …