27 research outputs found

    Aging affects postural tracking of complex visual motion cues

    Get PDF
    Postural tracking of visual motion cues improves perception–action coupling in aging, yet the nature of the visual cues to be tracked is critical for the efficacy of such a paradigm. We investigated how well healthy older (72.45 ± 4.72 years) and young (22.98 ± 2.9 years) adults can follow with their gaze and posture horizontally moving visual target cues of different degree of complexity. Participants tracked continuously for 120 s the motion of a visual target (dot) that oscillated in three different patterns: a simple periodic (simulated by a sine), a more complex (simulated by the Lorenz attractor that is deterministic displaying mathematical chaos) and an ultra-complex random (simulated by surrogating the Lorenz attractor) pattern. The degree of coupling between performance (posture and gaze) and the target motion was quantified in the spectral coherence, gain, phase and cross-approximate entropy (cross-ApEn) between signals. Sway–target coherence decreased as a function of target complexity and was lower for the older compared to the young participants when tracking the chaotic target. On the other hand, gaze–target coherence was not affected by either target complexity or age. Yet, a lower cross-ApEn value when tracking the chaotic stimulus motion revealed a more synchronous gaze–target relationship for both age groups. Results suggest limitations in online visuo-motor processing of complex motion cues and a less efficient exploitation of the body sway dynamics with age. Complex visual motion cues may provide a suitable training stimulus to improve visuo-motor integration and restore sway variability in older adults

    A System for the Synchronized Recording of Sonomyography, Electromyography and Joint Angle

    Get PDF
    Ultrasound and electromyography (EMG) are two of the most commonly used diagnostic tools for the assessment of muscles. Recently, many studies reported the simultaneous collection of EMG signals and ultrasound images, which were normally amplified and digitized by different devices. However, there is lack of a systematic method to synchronize them and no study has reported the effects of ultrasound gel to the EMG signal collection during the simultaneous data collection. In this paper, we introduced a new method to synchronize ultrasound B-scan images, EMG signals, joint angles and other related signals (e.g. force and velocity signals) in real-time. The B-mode ultrasound images were simultaneously captured by the PC together with the surface EMG (SEMG) and the joint angle signal. The deformations of the forearm muscles induced by wrist motions were extracted from a sequence of ultrasound images, named as Sonomyography (SMG). Preliminary experiments demonstrated that the proposed method could reliably collect the synchronized ultrasound images, SEMG signals and joint angle signals in real-time. In addition, the effect of ultrasound gel on the SEMG signals when the EMG electrodes were close to the ultrasound probe was studied. It was found that the SEMG signals were not significantly affected by the amount of the ultrasound gel. The system is being used for the study of contractions of various muscles as well as the muscle fatigue

    Consequences of lower extremity and trunk muscle fatigue on balance and functional tasks in older people: A systematic literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Muscle fatigue reduces muscle strength and balance control in young people. It is not clear whether fatigue resistance seen in older persons leads to different effects. In order to understand whether muscle fatigue may increase fall risk in older persons, a systematic literature review aimed to summarize knowledge on the effects of lower extremity and trunk muscle fatigue on balance and functional tasks in older people was performed.</p> <p>Methods</p> <p>Studies were identified with searches of the PUBMED and SCOPUS data bases.</p> <p>Papers describing effects of lower extremity or trunk muscle fatigue protocols on balance or functional tasks in older people were included. Studies were compared with regards to study population characteristics, fatigue protocol, and balance and functional task outcomes.</p> <p>Results</p> <p>Seven out of 266 studies met the inclusion criteria. Primary findings were: fatigue via resistance exercises to lower limb and trunk muscles induces postural instability during quiet standing; induced hip, knee and ankle muscle fatigue impairs functional reach, reduces the speed and power of sit-to-stand repetitions, and produces less stable and more variable walking patterns; effects of age on degree of fatigue and rate of recovery from fatigue are inconsistent across studies, with these disparities likely due to differences in the fatigue protocols, study populations and outcome measures.</p> <p>Conclusion</p> <p>Taken together, the findings suggest that balance and functional task performance are impaired with fatigue. Future studies should assess whether fatigue is related to increased risk of falling and whether exercise interventions may decrease fatigue effects.</p

    The role of muscle strength on tendon adaptability in old age.

    Get PDF
    PURPOSE: The purpose of the study was to determine: (1) the relationship between ankle plantarflexor muscle strength and Achilles tendon (AT) biomechanical properties in older female adults, and (2) whether muscle strength asymmetries between the individually dominant and non-dominant legs in the above subject group were accompanied by inter-limb AT size differences. METHODS: The maximal generated AT force, AT stiffness, AT Young's modulus, and AT cross-sectional area (CSA) along its length were determined for both legs in 30 women (65 ± 7 years) using dynamometry, ultrasonography, and magnetic resonance imaging. RESULTS: No between-leg differences in triceps surae muscle strength were identified between dominant (2798 ± 566 N) and non-dominant limb (2667 ± 512 N). The AT CSA increased gradually in the proximo-distal direction, with no differences between the legs. There was a significant correlation (P < 0.05) of maximal AT force with AT stiffness (r = 0.500) and Young's modulus (r = 0.414), but only a tendency with the mean AT CSA. However, region-specific analysis revealed a significant relationship between maximal AT force and the proximal part of the AT, indicating that this region is more likely to display morphological adaptations following an increase in muscle strength in older adults. CONCLUSIONS: These findings demonstrate that maximal force-generation capabilities play a more important role in the variation of AT stiffness and material properties than in tendon CSA, suggesting that exercise-induced increases in muscle strength in older adults may lead to changes in tendon stiffness foremost due to alterations in material rather than in its size

    Computation methods affect the reported values of in vivo human tendon stiffness

    Get PDF
    Scientific validity is questionable when findings from studies cannot be used to make sense of physiological and/or biomechanical data. In particular, is the case of in vivo determination of tendon stiffness (K). Here, approaches range from taking the gradient (a) throughout the data range of resting to Maximal Voluntary Contraction (MVC), (b) tangents at individual data points, (c) linear regressions at discrete force levels ((b) and (c) being 'reference standard' as they utilise a number of distinct regions of the Force-Elongation Relationship (FER)). STUDY DESIGN: A mathematical model approach is used to develop simple curvilinear FERs as seen when determining tendon mechanical properties, to allow variable calculations of K. OBJECTIVES: To compare variability in K estimates using the various approaches currently seen in the literature. METHODS: Three FER models were developed, representing low, medium and high K. Values of K were determined and compared using the approaches reported in the literature to estimate the magnitude of the difference between values attained of K. RESULTS: Through mathematical modelling, we demonstrate that the impact on the recorded value of K is substantial: relative to the reference standard methods, computation methods published range from underestimating K by 26% to overestimating it by 51%. CONCLUSION: This modelling helps by providing a 'scaling factor' through which the between studies variability associated with computational methods differences is minimised. This is especially important where researchers or clinicians require values which are consistent in the context of establishing the 'true' tendon mechanical properties to inform models or materials based on the biological properties of the human tendon
    corecore