271,215 research outputs found

    Chiral thermodynamics in a magnetic field

    Full text link
    We study thermodynamic properties of the QCD vacuum in a magnetic field below chiral phase transition. The hadronic phase free energy in a constant homogeneous magnetic field is calculated in the framework of the chiral perturbation theory at non-zero pionic mass. It is demonstrated that the order parameter of the chiral phase transition remains constant provided temperature and magnetic field strength are related through obtained equation (the phenomenon of ''quark condensate freezing'').Comment: RevTeX4, 9 pages, no figure

    Temperature dependence of antiferromagnetic susceptibility in ferritin

    Get PDF
    We show that antiferromagnetic susceptibility in ferritin increases with temperature between 4.2 K and 180 K (i. e. below the N\'{e}el temperature) when taken as the derivative of the magnetization at high fields (30×10430\times10^4 Oe). This behavior contrasts with the decrease in temperature previously found, where the susceptibility was determined at lower fields (5×1045\times10^4 Oe). At high fields (up to 50×10450 \times10^4 Oe) the temperature dependence of the antiferromagnetic susceptibility in ferritin nanoparticles approaches the normal behavior of bulk antiferromagnets and nanoparticles considering superantiferromagnetism, this latter leading to a better agreement at high field and low temperature. The contrast with the previous results is due to the insufficient field range used (<5×104< 5 \times10^4 Oe), not enough to saturate the ferritin uncompensated moment.Comment: 7 pages, 7 figures, accepted in Phys. Rev.

    Attractive Forces Between Electrons in QED3_{3}

    Get PDF
    Vacuum polarization effects are non-perturbatively incorporated into the photon propagator to eliminate the severe infrared problems characteristic of QED3_3. The theory is thus rephrased in terms of a massive vector boson whose mass is e2/(8π)e^2/(8\pi). Subsequently, it is shown that electron-electron bound states are possible in QED3_3.Comment: revtex, 10 pages and four figures, IFUSP/P-98

    Incommensurate Magnetic Order in TbTe3_3

    Full text link
    We report a neutron diffraction study of the magnetic phase transitions in the charge-density-wave (CDW) TbTe3_3 compound. We discover that in the paramagnetic phase there are strong 2D-like magnetic correlations, consistent with the pronounced anisotropy of the chemical structure. A long-range incommensurate magnetic order emerges in TbTe3_3 at Tmag1T_{mag1} = 5.78 K as a result of continuous phase transitions. We observe that near the temperature Tmag1T_{mag1} the magnetic Bragg peaks appear around the position (0,0,0.24) (or its rational multiples), that is fairly close to the propagation vector (0,0,0.29)(0,0,0.29) associated with the CDW phase transition in TbTe3_3. This suggests that correlations leading to the long-range magnetic order in TbTe3_3 are linked to the modulations that occur in the CDW state

    Center to limb observations and modeling of the Ca I 4227 A line

    Full text link
    The observed center-to-limb variation (CLV) of the scattering polarization in different lines of the Second Solar Spectrum can be used to constrain the height variation of various atmospheric parameters, in particular the magnetic fields via the Hanle effect. Here we attempt to model non-magnetic CLV observations of the Q/IQ/I profiles of the Ca I 4227 A line recorded with the ZIMPOL-3 at IRSOL. For modeling, we use the polarized radiative transfer with partial frequency redistribution with a number of realistic 1-D model atmospheres. We find that all the standard FAL model atmospheres, used by us, fail to simultaneously fit the observed (II, Q/IQ/I) at all the limb distances (μ\mu). However, an attempt is made to find a single model which can provide a fit at least to the CLV of the observed Q/IQ/I instead of a simultaneous fit to the (II, Q/IQ/I) at all μ\mu. To this end we construct a new 1-D model by combining two of the standard models after modifying their temperature structures in the appropriate height ranges. This new combined model closely reproduces the observed Q/IQ/I at all the μ\mu, but fails to reproduce the observed rest intensity at different μ\mu. Hence we find that no single 1-D model atmosphere succeeds in providing a good representation of the real Sun. This failure of 1-D models does not however cause an impediment to the magnetic field diagnostic potential of the Ca I 4227 A line. To demonstrate this we deduce the field strength at various μ\mu positions without invoking the use of radiative transfer.Comment: 20 pages, 10 figures, Accepted for publication in Ap

    The noncommutative degenerate electron gas

    Full text link
    The quantum dynamics of nonrelativistic single particle systems involving noncommutative coordinates, usually referred to as noncommutative quantum mechanics, has lately been the object of several investigations. In this note we pursue these studies for the case of multi-particle systems. We use as a prototype the degenerate electron gas whose dynamics is well known in the commutative limit. Our central aim here is to understand qualitatively, rather than quantitatively, the main modifications induced by the presence of noncommutative coordinates. We shall first see that the noncommutativity modifies the exchange correlation energy while preserving the electric neutrality of the model. By employing time-independent perturbation theory together with the Seiberg-Witten map we show, afterwards, that the ionization potential is modified by the noncommutativity. It also turns out that the noncommutative parameter acts as a reference temperature. Hence, the noncommutativity lifts the degeneracy of the zero temperature electron gas.Comment: 11 pages, to appear in J. Phys. A: Math. Ge

    Melting-freezing cycles in a relatively sheared pair of crystalline monolayers

    Get PDF
    The nonequilibrium dynamical behaviour that arises when two ordered two-dimensional monolayers of particles are sheared over each other is studied in Brownian dynamics simulations. A curious sequence of nonequilibrium states is observed as the driving rate is increased, the most striking of which is a sliding state with irregular alternation between disordered and ordered states. We comment on possible mechanisms underlying these cycles, and experiments that could observe them.Comment: 7 pages, 8 figures, minor changes in text and figures, references adde

    A reduced coupled-mode description for the electron-ion energy relaxation in dense matter

    Get PDF
    We present a simplified model for the electron-ion energy relaxation in dense two-temperature systems that includes the effects of coupled collective modes. It also extends the standard Spitzer result to both degenerate and strongly coupled systems. Starting from the general coupled-mode description, we are able to solve analytically for the temperature relaxation time in warm dense matter and strongly coupled plasmas. This was achieved by decoupling the electron-ion dynamics and by representing the ion response in terms of the mode frequencies. The presented reduced model allows for a fast description of temperature equilibration within hydrodynamic simulations and an easy comparison for experimental investigations. For warm dense matter, both fluid and solid, the model gives a slower electron-ion equilibration than predicted by the classical Spitzer result
    corecore