4,613 research outputs found
Water vapor diffusion in Mars subsurface environments
The diffusion coefficient of water vapor in unconsolidated porous media is measured
for various soil simulants at Mars-like pressures and subzero temperatures.
An experimental chamber which simultaneously reproduces a low-pressure,
low-temperature, and low-humidity environment is used to monitor water flux from an ice
source through a porous diffusion barrier. Experiments are performed on four types of
simulants: 40–70 µm glass beads, sintered glass filter disks, 1–3 µm dust (both loose and
packed), and JSC Mars–1. A theoretical framework is presented that applies to
environments that are not necessarily isothermal or isobaric. For most of our samples, we
find diffusion coefficients in the range of 2.8 to 5.4 cm^2 s^-1 at 600 Pascal and 260 K. This
range becomes 1.9–4.7 cm^2 s^-1 when extrapolated to a Mars-like temperature of 200 K.
Our preferred value for JSC Mars–1 at 600 Pa and 200 K is 3.7 ± 0.5 cm^2 s^-1. The
tortuosities of the glass beads is about 1.8. Packed dust displays a lower mean diffusion
coefficient of 0.38 ± 0.26 cm^2 s^-1, which can be attributed to transition to the Knudsen
regime where molecular collisions with the pore walls dominate. Values for the diffusion
coefficient and the variation of the diffusion coefficient with pressure are well matched by
existing models. The survival of shallow subsurface ice on Mars and the providence of
diffusion barriers are considered in light of these measurements
Phase operators, phase states and vector phase states for SU(3) and SU(2,1)
This paper focuses on phase operators, phase states and vector phase states
for the sl(3) Lie algebra. We introduce a one-parameter generalized oscillator
algebra A(k,2) which provides a unified scheme for dealing with su(3) (for k <
0), su(2,1) (for k > 0) and h(4) x h(4) (for k = 0) symmetries. Finite- and
infinite-dimensional representations of A(k,2) are constructed for k < 0 and k
> 0 or = 0, respectively. Phase operators associated with A(k,2) are defined
and temporally stable phase states (as well as vector phase states) are
constructed as eigenstates of these operators. Finally, we discuss a relation
between quantized phase states and a quadratic discrete Fourier transform and
show how to use these states for constructing mutually unbiased bases
Vector Coherent State Realization of Representations of the Affine Lie Algebra
The method of vector coherent states is generalized to study representations
of the affine Lie algebra . A large class of highest weight irreps
is explicitly constructed, which contains the integrable highest weight irreps
as special cases.Comment: 8 pages plain latex. To appear in J. Phys.
Braided peridotite sills and metasomatism in the Rum Layered Suite, Scotland
The Rum Eastern Layered Intrusion (ELI; Scotland) is an open-system layered intrusion constructed of 16 macro-rhythmic units. Each of the macro-rhythmic units consists of a peridotite base and a troctolite (+/- gabbro) top, previously attributed to the fractional crystallisation of a single magma batch. This classic paradigm has been challenged, however, with evidence presented for the emplacement of peridotite sills in Units 9, 10, and 14, such as cross-cutting relationships, upward-oriented apophyses, and lateral discontinuities. To test whether the other major peridotites within the ELI represent sills, we have carried out new field, petrographic, and mineral chemical analyses of the peridotites in Units 7, 8 and 9. The peridotites display large- and small-scale cross-cutting relationships with the overlying troctolite, indicative of an intrusive relationship. The peridotites also show large-scale coalescence and lateral spatial discontinuities such that the ELI unit divisions become arbitrary. Harrisite layers and Cr-spinel seams found throughout Units 7, 8, and 9 suggest the peridotites were constructed incrementally via repeated injections of picritic magma. Our observations allow for distinct subtypes of peridotite to be defined, separated by intrusive contacts, allowing for their relative chronology to be determined. Older, poikilitic peridotite, rich in clinopyroxene, is truncated by younger, well-layered peridotite, containing abundant harrisite layers. In addition to the new peridotite subtypes defined in this study, we find strong evidence for laterally oriented metasomatism within clinopyroxene-rich wehrlites at the top of the Unit 8 peridotite. The wehrlites and surrounding peridotites record a complex series of metasomatic reactions that transformed thin picrite sills into clinopyroxene-rich wehrlites without any evidence for the sort of vertical melt movement typically posited in layered intrusions. The observations presented in this study from the ELI cannot be reconciled with the classic magma chamber paradigm and are better explained by the emplacement of composite sills into pre-existing feldspathic cumulate (gabbro or troctolite). The evidence for sill emplacement presented here suggests that the layered complex was constructed by a combination of sill emplacement and metasomatism, forming many of the unusual (often clinopyroxene-rich) lithologies that surround the sills. The broad-scale formation of the layered peridotites via incremental sill emplacement, suggested by the occurrence of upward-oriented apophyses, coalescence, and lateral discontinuity, could be applied to much larger ultramafic intrusions, which might have formed by similar mechanisms
Rho-meson form factors and QCD sum rules
We present predictions for rho-meson form factors obtained from the analysis
of QCD sum rules in next-to-leading order of perturbation theory. The radiative
corrections turn out to be sizeable and should be taken into account in
rigorous theoretical analysis.Comment: LaTeX file, 14 pages, 7 figure
Deterministic spatio-temporal control of nano-optical fields in optical antennas and nano transmission lines
We show that pulse shaping techniques can be applied to tailor the ultrafast
temporal response of the strongly confined and enhanced optical near fields in
the feed gap of resonant optical antennas (ROAs). Using finite-difference
time-domain (FDTD) simulations followed by Fourier transformation, we obtain
the impulse response of a nano structure in the frequency domain, which allows
obtaining its temporal response to any arbitrary pulse shape. We apply the
method to achieve deterministic optimal temporal field compression in ROAs with
reduced symmetry and in a two-wire transmission line connected to a symmetric
dipole antenna. The method described here will be of importance for experiments
involving coherent control of field propagation in nanophotonic structures and
of light-induced processes in nanometer scale volumes.Comment: 5 pages, 5 figure
- …