8 research outputs found
The Effect of pendent groups upon flexibility in coordination networks with square lattice topology
Gas or vapor-induced phase transformations in flexible coordination networks (CNs) offer the potential to exceed the performance of their rigid counterparts for separation and storage applications. However, whereas ligand modification has been used to alter the properties of such stimulus-responsive materials, they remain understudied compared with their rigid counterparts. Here, we report that a family of Zn2+ CNs with square lattice (sql) topology, differing only through the substituents attached to a linker, exhibit variable flexibility. Structural and CO2 sorption studies on the sql networks, [Zn(5-Ria)(bphy)]n, ia = isophthalic acid, bphy = 1,2-bis(pyridin-4-yl)hydrazine, R = −CH3, −OCH3, −C(CH3)3, -N-N-Ph, and -N-N-Ph(CH3)2, 2−6, respectively, revealed that the substituent moieties influenced both structural and gas sorption properties. Whereas 2−3 exhibited rigidity, 4, 5, and 6 exhibited reversible transformation from small pore to large pore phases. Overall, the insight into the profound effect of pendent moieties of linkers upon phase transformations in this family of layered CNs should be transferable to other CN classes.</p
Water vapour induced structural flexibility in a square lattice coordination network
Herein, we introduce a new square lattice topology coordination network, sql-(1,3-bib)(ndc)-Ni, with three types of connection and detail its gas and vapour induced phase transformations. Exposure to humidity resulted in an S-shaped isotherm profile, suggesting potential utility of such materials as desiccants.</p
Gate-opening induced by C8 aromatics in a double diamondoid coordination network
Coordination networks (CNs) that undergo guest-induced structural transformations are of topical interest thanks to their potential utility in separations and storage applications. Herein, we report a double diamondoid (ddi) topology CN, [Ni2(bimpz)2(bdc)2(H2O)]n or X-ddi-2-Ni (H2bdc = 1,4-benzenedicarboxylic acid, bimpz = 3,6-bis(imidazol-1-yl)pyridazine), that undergoes structural transformations induced by C8 isomers, i.e., xylenes (o-xylene, OX; m-xylene, MX; p-xylene, PX) and ethylbenzene (EB). X-ddi-2-Ni was characterized by single-crystal to single-crystal transformations from a nonporous phase, X-ddi-2-Ni-β, to isostructural C8-loaded phases, namely X-ddi-2-Ni-OX, X-ddi-2-Ni-MX, X-ddi-2-Ni-PX and X-ddi-2-Ni-EB. X-ddi-2-Ni accommodates two C8 isomers per Ni unit, resulting in relatively high uptake (ca. 50 wt %), but with low selectivity toward C8 isomers as found using nuclear magnetic resonance (NMR) and gas chromatography (GC). In addition, a narrow range of gate-opening pressures for each isomer was determined from dynamic vapor sorption, consistent with the nonadaptable nature of the C8-loaded phase determined crystallographically, also supported by modeling.</div
Crystal engineering of two light and pressure responsive physisorbents
An emerging strategy in the design of efficient gas storage technologies is the development of stimuliresponsive physisorbents which undergo transformations in response to a particular stimulus, such as pressure, heat or light. Herein, we report two isostructural light modulated adsorbents (LMAs) containing bis-3-thienylcyclopentene (BTCP), LMA-1 [Cd(BTCP)(DPT)2] (DPT=2,5-diphenylbenzene-1,4-dicarboxylate) and LMA-2 [Cd(BTCP)(FDPT)2] (FDPT=5-fluoro-2,diphenylbenzene-1,4-dicarboxylate). Both LMAs undergo pressure induced switching transformations from non-porous to porous via adsorption of N2, CO2 and C2H2. LMA-1 exhibited multi-step adsorption while LMA-2 showed a single-step adsorption isotherm. The light responsive nature of the BTPC ligand in both frameworks was exploited with irradiation of LMA-1 resulting in a 55% maximum reduction of CO2 uptake at 298 K. This study reports the first example of a switching sorbent (closed to open) that can be further modulated by light.</p
Effect of polymorphism on the sorption properties of a flexible square-lattice topology coordination network
The stimulus-responsive behavior of coordination networks (CNs), which switch between closed (nonporous) and open (porous) phases, is of interest because of its potential utility in gas storage and separation. Herein, we report two polymorphs of a new square-lattice (sql) topology CN, X-sql-1-Cu, of formula [Cu(Imibz)2]n (HImibz = {[4-(1H-imidazol-1-yl)phenylimino]methyl}benzoic acid), isolated from the as-synthesized CN X-sql-1-Cu-(MeOH)2·2MeOH, which subsequently transformed to a narrow pore solvate, X-sql-1-Cu-A·MeOH, upon mild activation (drying in air or heating at 333 K under nitrogen). X-sql-1-Cu-A·MeOH contains MeOH in cavities, which was removed through exposure to vacuum for 2 h, yielding the nonporous (closed) phase X-sql-1-Cu-A. In contrast, a more dense polymorph, X-sql-1-Cu-B, was obtained by exposing X-sql-1-Cu-(MeOH)2·2MeOH directly to vacuum for 2 h. Gas sorption studies conducted on X-sql-1-Cu-A and X-sql-1-Cu-B revealed different switching behaviors to two open phases (X-sql-1-Cu·CO2 and X-sql-1-Cu·C2H2), with different gate-opening threshold pressures for CO2 at 195 K and C2H2 at 278 K. Coincident CO2 sorption and in situ powder X-ray diffraction studies at 195 K revealed that X-sql-1-Cu-A transformed to X-sql-1-Cu-B after the first sorption cycle and that the CO2-induced switching transformation was thereafter reversible. The results presented herein provide insights into the relationship between two polymorphs of a CN and the effect of polymorphism upon gas sorption properties. To the best of our knowledge, whereas sql networks such as X-sql-1-Cu are widely studied in terms of their structural and sorption properties, this study represents only the second example of an in-depth study of the sorption properties of polymorphic sql networks.</p
Rapid determination of experimental sorption isotherms from non-equilibrium sorption kinetic data
Herein, we report a new method for rapid determination of experimental sorption isotherms that exploits gravimetric non-equilibrium sorption kinetics data in a thin sorbent bed. In comparison with equilibrium-based isotherm determination methods, this sorption kinetics isotherm determination (SKID) method needs only two equilibrium points, P/P0min and P/P0max. SKID requires up to an order of magnitude less data collection time than conventional methods and is suitable for high-throughput sorbent discovery and evaluation. SKID was validated by testing a library comprising 30 sorbents, including rigid and flexible metal-organic frameworks (MOFs), inorganics (zeolites), and organics (microcrystalline cellulose). Average data collection time for water vapor was 3.1 vs. 23 h for dynamic vapor sorption experiments. SKID was also demonstrated for other vapors (C8 aromatics) and a gas (CO2), making it a promising tool for rapid screening of new or existing sorbents for applications such as water harvesting and dehumidification and carbon capture.</p
Water vapour and gas induced phase transformations in an 8-fold interpenetrated diamondoid metal–organic framework
In this work, we report the synthesis, structural characterisation and sorption properties of an 8-fold interpenetrated diamondoid (dia) metal–organic framework (MOF) that is sustained by a new extended linker ligand, [Cd(Imibz)2], X-dia-2-Cd, HImibz or 2 = 4-((4-(1H-imidazol-1-yl)phenylimino)methyl)benzoic acid. X-dia-2-Cd was found to exhibit reversible single-crystal-to-single-crystal (SC–SC) transformations between four distinct phases: an as-synthesised (from N,N-dimethylformamide) wide-pore phase, X-dia-2-Cd-α; a narrow-pore phase, X-dia-2-Cd-β, formed upon exposure to water; a narrow-pore phase obtained by activation, X-dia-2-Cd-γ; a medium-pore CO2-loaded phase X-dia-2-Cd-δ. While the space group remained constant in the four phases, the cell volumes and calculated void space ranged from 4988.7 Å3 and 47% (X-dia-2-Cd-α), respectively, to 3200.8 Å3 and 9.1% (X-dia-2-Cd-γ), respectively. X-dia-2-Cd-γ also exhibited a water vapour-induced structural transformation to the water-loaded X-dia-2-Cd-β phase, resulting in an S-shaped sorption isotherm. The inflection point occurred at 18% RH with negligible hysteresis on the desorption profile. Water vapour temperature-humidity swing cycling (60% RH, 300 K to 0% RH, 333 K) indicated hydrolytic stability of X-dia-2-Cd and working capacity was retained after 128 cycles of sorbent regeneration. CO2 (at 195 K) was also observed to induce a structural transformation in X-dia-2-Cd-γ and in situ PXRD studies at 1 bar of CO2, 195 K revealed the formation of X-dia-2-Cd-δ, which exhibited 31% larger unit cell volume than X-dia-2-Cd-γ.</p
One atom can make all the difference: Gas-induced phase transformations in bisimidazole-linked diamondoid coordination networks
Coordination networks (CNs) that undergo gas-induced transformation from closed (nonporous) to open (porous) structures are of potential utility in gas storage applications, but their development is hindered by limited control over their switching mechanisms and pressures. In this work, we report two CNs, [Co(bimpy)(bdc)]n (X-dia-4-Co) and [Co(bimbz)(bdc)]n (X-dia-5-Co) (H2bdc = 1,4-benzendicarboxylic acid; bimpy = 2,5-bis(1H-imidazole-1-yl)pyridine; bimbz = 1,4-bis(1H-imidazole-1-yl)benzene), that both undergo transformation from closed to isostructural open phases involving at least a 27% increase in cell volume. Although X-dia-4-Co and X-dia-5-Co only differ from one another by one atom in their N-donor linkers (bimpy = pyridine, and bimbz = benzene), this results in different pore chemistry and switching mechanisms. Specifically, X-dia-4-Co exhibited a gradual phase transformation with a steady increase in the uptake when exposed to CO2, whereas X-dia-5-Co exhibited a sharp step (type F-IV isotherm) at P/P0 0.008 or P 3 bar (195 or 298 K, respectively). Single-crystal X-ray diffraction, in situ powder XRD, in situ IR, and modeling (density functional theory calculations, and canonical Monte Carlo simulations) studies provide insights into the nature of the switching mechanisms and enable attribution of pronounced differences in sorption properties to the changed pore chemistry.</p