2,258 research outputs found

    Proof of a conjecture on induced subgraphs of Ramsey graphs

    Full text link
    An n-vertex graph is called C-Ramsey if it has no clique or independent set of size C log n. All known constructions of Ramsey graphs involve randomness in an essential way, and there is an ongoing line of research towards showing that in fact all Ramsey graphs must obey certain "richness" properties characteristic of random graphs. More than 25 years ago, Erd\H{o}s, Faudree and S\'{o}s conjectured that in any C-Ramsey graph there are Ω(n5/2)\Omega\left(n^{5/2}\right) induced subgraphs, no pair of which have the same numbers of vertices and edges. Improving on earlier results of Alon, Balogh, Kostochka and Samotij, in this paper we prove this conjecture

    The random k-matching-free process

    Full text link
    Let P\mathcal{P} be a graph property which is preserved by removal of edges, and consider the random graph process that starts with the empty nn-vertex graph and then adds edges one-by-one, each chosen uniformly at random subject to the constraint that P\mathcal{P} is not violated. These types of random processes have been the subject of extensive research over the last 20 years, having striking applications in extremal combinatorics, and leading to the discovery of important probabilistic tools. In this paper we consider the kk-matching-free process, where P\mathcal{P} is the property of not containing a matching of size kk. We are able to analyse the behaviour of this process for a wide range of values of kk; in particular we prove that if k=o(n)k=o(n) or if n2k=o(n/logn)n-2k=o(\sqrt{n}/\log n) then this process is likely to terminate in a kk-matching-free graph with the maximum possible number of edges, as characterised by Erd\H{o}s and Gallai. We also show that these bounds on kk are essentially best possible, and we make a first step towards understanding the behaviour of the process in the intermediate regime

    Student Recital

    Get PDF
    corecore