113 research outputs found
International tourism in Małopolskie Województwo: the present situation and prospects for development
Małopolskie Województwo is one of the most popular tourist regions in Poland. Due to many attractions, long traditions of hosting tourists and well-developed accommodation facilities, Małopolskie Województwo has become the destination for a growing number of international tourists in recent years. Significant growth in incoming international tourism is found both in Kraków and in mountain areas. The objective of this paper is to present the state of development of incoming international tourism in Małopolskie Województwo
The natural brackets on couples of vector fields and 1-forms
All natural bilinear operators transforming pairs of couples of vector fields and 1-forms into couples of vector
fields and 1-forms are found. All natural bilinear operators as above satisfying the Leibniz rule are extracted. All natural
Lie algebra brackets on couples of vector fields and 1-forms are collected
Stan i perspektywy rozwoju turystyki międzynarodowej w województwie małopolskim
Województwo małopolskie od lat zalicza się do najpopularniejszych regionów turystycznych w Polsce. Ze względu na liczne
walory turystyczne, bogate tradycje w goszczeniu turystów, a także stosunkowo dobrze rozwiniętą bazę turystyczną, województwo
małopolskie staje się w ostatnich latach celem coraz liczniejszych przyjazdów turystów zagranicznych. Znaczącą dynamikę wzrostu zagranicznej
turystyki przyjazdowej obserwuje się zarówno w samym Krakowie, jak i na obszarach górskich. Celem artykułu jest próba
przedstawienia stanu rozwoju zagranicznej turystyki przyjazdowej do województwa małopolskiego
On lifting of 2-vector fields to -jet prolongation of the tangent bundle
If and , we prove that any natural linear operator lifting 2-vector fields (i.e., skew-symmetric tensor fields of type (2,0)) on -dimensional manifolds into 2-vector fields on -jet prolongation of the tangent bundle of is the zero one
The twisted gauge-natural bilinear brackets on couples of linear vector fields and linear p-forms
We completely describe all gauge-natural operators which send linear -forms on vector bundles (with sufficiently large dimensional bases) into -bilinear operators transforming pairs of couples of linear vector fields and linear -forms on into couples of linear vector fields and linear -forms on . Further, we extract all (as above) such that is the restriction of the well-known Courant bracket and satisfies the Jacobi identity in Leibniz form for all closed linear -forms
On the existence of connections with a prescribed skew-symmetic Ricci tensor
We study the so-called inverse problem. Namely, given a prescribed skew-symmetric Ricci tensor we find (locally) a respective linear connection
The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds
If is a Riemannian manifold, we have the well-known base preserving vector bundle isomorphism given by between the tangent and the cotangent bundles of . In the present note, we generalize this isomorphism to the one between the -th order vector tangent and the -th order cotangent bundles of . Next, we describe all base preserving vector bundle maps depending on a Riemannian metric in terms of natural (in ) tensor fields on
Lifting vector fields from manifolds to the -jet prolongation of the tangent bundle
If m≥3 and r≥0, we deduce that any natural linear operator lifting vector fields from an m-manifold M to the r-jet prolongation JrTM of the tangent bundle TM is the composition of the flow lifting Jr corresponding to the r-jet prolongation functor Jr with a natural linear operator lifting vector fields from M to TM. If 0≤s≤r and m≥3, we find all natural linear operators transforming vector fields on M into base-preserving fibred maps JrTM→JsTM
- …