113 research outputs found

    International tourism in Małopolskie Województwo: the present situation and prospects for development

    Get PDF
    Małopolskie Województwo is one of the most popular tourist regions in Poland. Due to many attractions, long traditions of hosting tourists and well-developed accommodation facilities, Małopolskie Województwo has become the destination for a growing number of international tourists in recent years. Significant growth in incoming international tourism is found both in Kraków and in mountain areas. The objective of this paper is to present the state of development of incoming international tourism in Małopolskie Województwo

    The natural brackets on couples of vector fields and 1-forms

    Get PDF
    All natural bilinear operators transforming pairs of couples of vector fields and 1-forms into couples of vector fields and 1-forms are found. All natural bilinear operators as above satisfying the Leibniz rule are extracted. All natural Lie algebra brackets on couples of vector fields and 1-forms are collected

    Stan i perspektywy rozwoju turystyki międzynarodowej w województwie małopolskim

    Get PDF
    Województwo małopolskie od lat zalicza się do najpopularniejszych regionów turystycznych w Polsce. Ze względu na liczne walory turystyczne, bogate tradycje w goszczeniu turystów, a także stosunkowo dobrze rozwiniętą bazę turystyczną, województwo małopolskie staje się w ostatnich latach celem coraz liczniejszych przyjazdów turystów zagranicznych. Znaczącą dynamikę wzrostu zagranicznej turystyki przyjazdowej obserwuje się zarówno w samym Krakowie, jak i na obszarach górskich. Celem artykułu jest próba przedstawienia stanu rozwoju zagranicznej turystyki przyjazdowej do województwa małopolskiego

    On lifting of 2-vector fields to rr-jet prolongation of the tangent bundle

    Get PDF
    If m3m \geq 3 and r1r \geq 1, we prove that any natural linear operator AA lifting 2-vector fields ΛΓ(2TM)\Lambda \in \Gamma (\bigwedge^2 TM) (i.e., skew-symmetric tensor fields of type (2,0)) on mm-dimensional manifolds MM into 2-vector fields A(Λ)A(\Lambda) on rr-jet prolongation JrTMJ^rTM of the tangent bundle TMTM of MM is the zero one

    The twisted gauge-natural bilinear brackets on couples of linear vector fields and linear p-forms

    Get PDF
    We completely describe all gauge-natural operators CC which send linear (p+2)(p+2)-forms HH on vector bundles EE (with sufficiently large dimensional bases) into R\mathbf{R}-bilinear operators CHC_H transforming pairs (X1ω1,X2ω2)(X_1\oplus\omega_1,X_2\oplus\omega_2) of couples of linear vector fields and linear pp-forms on EE into couples CH(X1ω1,X2ω2)C_H(X_1\oplus\omega_1, X_2\oplus\omega_2) of linear vector fields and linear pp-forms on EE. Further, we extract all CC (as above) such that C0C_0 is the restriction of the well-known Courant bracket and CHC_H satisfies the Jacobi identity in Leibniz form for all closed linear (p+2)(p+2)-forms HH

    On the existence of connections with a prescribed skew-symmetic Ricci tensor

    Get PDF
    We study the so-called inverse problem. Namely, given a prescribed skew-symmetric Ricci tensor we find (locally) a respective linear connection

    The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds

    Get PDF
    If (M,g)(M,g) is a Riemannian manifold, we have the well-known base preserving   vector bundle isomorphism TM=~TMTM\mathrel{\tilde=}T^*M given by vg(v,)v\to g(v,-) between the tangent TMTM and the cotangent TMT^*M bundles of MM. In the present note, we generalize this isomorphism to the one T(r)M=~TrMT^{(r)}M\mathrel{\tilde=} T^{r*}M between the rr-th order vector tangent T(r)M=(Jr(M,R)0)T^{(r)}M=(J^r(M,R)_0)^* and the rr-th order cotangent TrM=Jr(M,R)0T^{r*}M=J^r(M,R)_0 bundles of MM. Next, we describe all base preserving  vector bundle maps CM(g):T(r)MTrMC_M(g):T^{(r)}M\to T^{r*}M depending on a Riemannian metric gg in terms of natural (in gg) tensor fields on MM

    Lifting vector fields from manifolds to the rr-jet prolongation of the tangent bundle

    Get PDF
    If m≥3 and r≥0, we deduce that any natural linear operator lifting vector fields from an m-manifold M to the r-jet prolongation JrTM of the tangent bundle TM is the composition of the flow lifting Jr corresponding to the r-jet prolongation functor Jr with a natural linear operator lifting vector fields from M to TM. If 0≤s≤r and m≥3, we find all natural linear operators transforming vector fields on M into base-preserving fibred maps JrTM→JsTM
    corecore