998 research outputs found

    Jetting Through The Primordial Universe

    Full text link
    Collisions of heavy ion nuclei at relativistic speeds (close to the speed of light) creates a high temperature and very dense form of matter, now known to consist of de-confined quarks and gluons, named the quark gluon plasma (QGP). In this thesis, Run1 experimental data from pp and heavy ion collisions at the CERN LHC is analyzed with the CMS detector. The pp jet cross section is compared with next to leading order theoretical calculations supplemented with non perturbative corrections for three different jet radii highlighting better comparisons for larger radii jets. Measurement of the jet yield followed by the nuclear modification factors in proton-lead at 5.02 TeV and lead-lead collisions at 2.76 TeV are presented. A new data driven technique is introduced to estimate and correct for the fake jet contribution in PbPb for low transverse momenta jets. The nuclear modification factors studied in this thesis show jet quenching to be attributed to final state effects, have a strong correlation to the event centrality, a weak inverse correlation to the jet transverse momenta and an apparent independence on the jet radii in the kinematic range studied. These measurements are compared with leading theoretical model calculations and other experimental results at the LHC leading to unanimous agreement on the qualitative nature of jet quenching. This thesis also features novel updates to the Monte Carlo heavy ion event generator JEWEL (Jet Evolution With Energy Loss) including the boson-jet production channels and also background subtraction techniques to reduce the effect of the thermal background. Keeping track of these jet-medium recoils in JEWEL due to the background subtraction techniques significantly improves its descriptions of several jet structure and sub-structure measurements at the LHC. [Shortened abstract]Comment: PhD Thesis: Defended on June 6th 2017 at Rutgers University, New Brunswick. Advised by Prof. Sevil Salur. Includes material from 1707.01539, 1609.05383, 1608.03099, 1601.02001 and 1510.0337

    Medium response in JEWEL and its impact on jet shape observables in heavy ion collisions

    Full text link
    Realistic modeling of medium-jet interactions in heavy ion collisions is becoming increasingly important to successfully predict jet structure and shape observables. In JEWEL, all partons belonging to the parton showers initiated by hard scattered partons undergo collisions with thermal partons from the medium, leading to both elastic and radiative energy loss. The recoiling medium partons carry away energy and momentum from the jet. Since the thermal component of these recoils' momenta is part of the soft background activity, comparison with data requires the implementation of a subtraction procedure. We present two independent procedures through which background subtraction can be performed and discuss the impact of the medium recoil on jet shape observables. Keeping track of the medium response significantly improves the JEWEL description of jet shape measurements.Comment: 23 pages, 16 figure

    Medium Recoils and background subtraction in JEWEL

    Full text link
    \textsc{Jewel} is a fully dynamical event generator for jet evolution in a dense QCD medium, which has been validated for multiple jet and jet-like observables. Jet constituents (partons) undergo collisions with thermal partons from the medium, leading to both elastic and radiative energy loss. The recoiling medium scattering centers carry away energy and momentum from the jet. Keeping track of these recoils is essential for the description of intra-jet observables. Since the thermal component of the recoils is part of the soft background activity, comparison with data on jet observables requires the implementation of a background subtraction procedure. We will show two independent procedures through which background subtraction can be performed and discuss the impact of the medium recoil on jet shape observables and jet-background correlations. Keeping track of the medium recoil significantly improves the \textsc{Jewel} description of jet shape measurements.Comment: Proceedings for talk given at HP 2016 at Wuhan Chin

    Simulating V+jet processes in heavy ion collisions with JEWEL

    Full text link
    Processes in which a jet recoils against an electroweak boson complement studies of jet quenching in heavy ion collisions at the LHC. As the boson does not interact strongly it escapes the dense medium unmodified and thus provides a more direct access to the hard scattering kinematics than can be obtained in di-jet events. First measurements of jet modification in these processes are now available from the LHC experiments and will improve greatly with better statistics in the future. We present an extension of JEWEL to boson-jet processes. JEWEL is a dynamical framework for jet evolution in a dense background based on perturbative QCD, that is in agreement with a large variety of jet observables. We also obtain a good description of the CMS and ATLAS data for y+jet and Z+jet processes at 2.76 TeV and 5.02 TeV.Comment: 8 pages, v2: version to be publishe

    Identifying Heavy-Flavor Jets Using Vectors of Locally Aggregated Descriptors

    Full text link
    Jets of collimated particles serve a multitude of purposes in high energy collisions. Recently, studies of jet interaction with the quark-gluon plasma (QGP) created in high energy heavy ion collisions are of growing interest, particularly towards understanding partonic energy loss in the QGP medium and its related modifications of the jet shower and fragmentation. Since the QGP is a colored medium, the extent of jet quenching and consequently, the transport properties of the medium are expected to be sensitive to fundamental properties of the jets such as the flavor of the parton that initiates the jet. Identifying the jet flavor enables an extraction of the mass dependence in jet-QGP interactions. We present a novel approach to tagging heavy-flavor jets at collider experiments utilizing the information contained within jet constituents via the \texttt{JetVLAD} model architecture. We show the performance of this model in proton-proton collisions at center of mass energy s=200\sqrt{s} = 200 GeV as characterized by common metrics and showcase its ability to extract high purity heavy-flavor jet sample at various jet momenta and realistic production cross-sections including a brief discussion on the impact of out-of-time pile-up. Such studies open new opportunities for future high purity heavy-flavor measurements at jet energies accessible at current and future collider experiments.Comment: 18 pages, 6 figures and 3 tables. Accepted by JINS

    Resolving the Scales of the Quark-Gluon Plasma with Energy Correlators

    Full text link
    Jets provide us with ideal probes of the quark-gluon plasma (QGP) produced in heavy-ion collisions, since its dynamics at its different scales is imprinted into the multi-scale substructure of the final state jets. We present a new approach to jet substructure in heavy-ion collisions based on the study of correlation functions of energy flow operators. By analysing the two-point correlator of an in-medium quark jet, we demonstrate that the spectra of correlation functions robustly identify the scales defined by the properties of the QGP, particularly those associated with the onset of colour coherence.Comment: 5 pages, 4 lovely figure
    • …
    corecore