221 research outputs found

    Fundamental and clinical evaluation of "SCC RIABEAD" kit for immuno radiometric assay of squamous cell carcinoma related antigen.

    Get PDF
    Classic vector control strategies target mosquitoes indoors as the main transmitters of malaria are indoor-biting and –resting mosquitoes. However, the intensive use of insecticide-treated bed-nets (ITNs) and indoor residual spraying have put selective pressure on mosquitoes to adapt in order to obtain human blood meals. Thus, early-evening and outdoor vector activity is becoming an increasing concern. This study assessed the effect of a deltamethrin-treated net (100 mg/m2) attached to a one-meter high fence around outdoor cattle enclosures on the number of mosquitoes landing on humans. Mosquitoes were collected from four cattle enclosures: Pen A – with cattle and no net; B – with cattle and protected by an untreated net; C – with cattle and protected by a deltamethrin-treated net; D – no cattle and no net. A total of 3217 culicines and 1017 anophelines were collected, of which 388 were Anopheles gambiae and 629 An. ziemanni. In the absence of cattle nearly 3 times more An. gambiae (p<0.0001) landed on humans. The deltamethrin-treated net significantly reduced (nearly three-fold, p<0.0001) culicine landings inside enclosures. The sporozoite rate of the zoophilic An. ziemanni, known to be a secondary malaria vector, was as high as that of the most competent vector An. gambiae; raising the potential of zoophilic species as secondary malaria vectors. After deployment of the ITNs a deltamethrin persistence of 9 months was observed despite exposure to African weather conditions. The outdoor use of ITNs resulted in a significant reduction of host-seeking culicines inside enclosures. Further studies investigating the effectiveness and spatial repellence of ITNs around other outdoor sites, such as bars and cooking areas, as well as their direct effect on vector-borne disease transmission are needed to evaluate its potential as an appropriate outdoor vector control tool for rural Africa

    New femoral remains of Nacholapithecus kerioi: Implications for intraspecific variation and Miocene hominoid evolution

    Get PDF
    The middle Miocene stem kenyapithecine Nacholapithecus kerioi (16–15 Ma; Nachola, Kenya) is represented by a large number of isolated fossil remains and one of the most complete skeletons in the hominoid fossil record (KNM-BG 35250). Multiple fieldwork seasons performed by Japanese–Kenyan teams during the last part of the 20th century resulted in the discovery of a large sample of Nacholapithecus fossils. Here, we describe the new femoral remains of Nacholapithecus. In well-preserved specimens, we evaluate sex differences and within-species variation using both qualitative and quantitative traits. We use these data to determine whether these specimens are morphologically similar to the species holotype KNM-BG 35250 (which shows some plastic deformation) and to compare Nacholapithecus with other Miocene hominoids and extant anthropoids to evaluate the distinctiveness of its femur. The new fossil evidence reaffirms previously reported descriptions of some distal femoral traits, namely the morphology of the patellar groove. However, results also show that relative femoral head size in Nacholapithecus is smaller, relative neck length is longer, and neck–shaft angle is lower than previously reported for KNM-BG 35250. These traits have a strong functional signal related to the hip joint kinematics, suggesting that the morphology of the proximal femur in Nacholapithecus might be functionally related to quadrupedal-like behaviors instead of more derived antipronograde locomotor modes. Results further demonstrate that other African Miocene apes (with the exception of Turkanapithecus kalakolensis) generally fall within the Nacholapithecus range of variation, whose overall femoral shape resembles that of Ekembo spp. and Equatorius africanus. Our results accord with the previously inferred locomotor repertoire of Nacholapithecus, indicating a combination of generalized arboreal quadrupedalism combined with other antipronograde behaviors (e.g., vertical climbing)

    Manipulating textures of rotating superfluid 3 He- A phase in a single narrow cylinder

    Get PDF
    We investigated order parameter textures of the rotating superfluid 3 He-A phase in a single narrow cylinder with a diameter of about 10 times the dipole coherence length by the cw-NMR method. It is theoretically proposed that in such a narrow cylinder, a few special textures will appear due to the confinement in a cylindrical geometry. We observed three types of NMR spectra in the A phase. The NMR spectra of the textures were identified by a comparison with the spin waves excited in the NMR potential using their numerically calculated resonance frequencies and relative intensities. We have established a method to selectively generate each one of the textures by controlling the conditions when the A phase was formed, such as the applied magnetic field, rotation angular velocity, and temperature

    Clinical and neural effects of six-week administration of oxytocin on core symptoms of autism

    Get PDF
    Autism spectrum disorder is a prevalent neurodevelopmental disorder with no established pharmacological treatment for its core symptoms. Although previous literature has shown that single-dose administration of oxytocin temporally mitigates autistic social behaviours in experimental settings, it remains in dispute whether such potentially beneficial responses in laboratories can result in clinically positive effects in daily life situations, which are measurable only in long-term observations of individuals with the developmental disorder undergoing continual oxytocin administration. Here, to address this issue, we performed an exploratory, randomized, double-blind, placebo-controlled, crossover trial including 20 high-functional adult males with autism spectrum disorder. Data obtained from 18 participants who completed the trial showed that 6-week intranasal administration of oxytocin significantly reduced autism core symptoms specific to social reciprocity, which was clinically evaluated by Autism Diagnostic Observation Scale (P = 0.034, PFDR < 0.05, Cohen's d = 0.78). Critically, the improvement of this clinical score was accompanied by oxytocin-induced enhancement of task-independent resting-state functional connectivity between anterior cingulate cortex and dorso-medial prefrontal cortex (rho = -0.60, P = 0.011), which was measured by functional magnetic resonance imaging. Moreover, using the same social-judgement task as used in our previous single-dose oxytocin trial, we confirmed that the current continual administration also significantly mitigated behavioural and neural responses during the task, both of which were originally impaired in autistic individuals (judgement tendency: P = 0.019, d = 0.62; eye-gaze effect: P = 0.03, d = 0.56; anterior cingulate activity: P = 0.00069, d = 0.97; dorso-medial prefrontal activity: P = 0.0014, d = 0.92; all, PFDR < 0.05). Furthermore, despite its longer administration, these effect sizes of the 6-week intervention were not larger than those seen in our previous single-dose intervention. These findings not only provide the evidence for clinically beneficial effects of continual oxytocin administration on the core social symptoms of autism spectrum disorder with suggesting its underlying biological mechanisms, but also highlight the necessity to seek optimal regimens of continual oxytocin treatment in future studies

    Effects of rTMS of pre-supplementary motor area on fronto basal ganglia network activity during stop-signal task

    Get PDF
    Stop-signal task (SST) has been a key paradigm for probing human brain mechanisms underlying response inhibition, and the inhibition observed in SST is now considered to largely depend on a fronto basal ganglia network consisting mainly of right inferior frontal cortex, pre-supplementary motor area (pre-SMA), and basal ganglia, including subthalamic nucleus, striatum (STR), and globus pallidus pars interna (GPi). However, causal relationships between these frontal regions and basal ganglia are not fully understood in humans. Here, we partly examined these causal links by measuring human fMRI activity during SST before and after excitatory/inhibitory repetitive transcranial magnetic stimulation (rTMS) of pre-SMA. We first confirmed that the behavioral performance of SST was improved by excitatory rTMS and impaired by inhibitory rTMS. Afterward, we found that these behavioral changes were well predicted by rTMS-induced modulation of brain activity in pre-SMA, STR, and GPi during SST. Moreover, by examining the effects of the rTMS on resting-state functional connectivity between these three regions, we showed that the magnetic stimulation of pre-SMA significantly affected intrinsic connectivity between pre-SMA and STR, and between STR and GPi. Furthermore, the magnitudes of changes in resting-state connectivity were also correlated with the behavioral changes seen in SST. These results suggest a causal relationship between pre-SMA and GPi via STR during response inhibition, and add direct evidence that the fronto basal ganglia network for response inhibition consists of multiple top-down regulation pathways in humans

    Oxytocin improves behavioural and neural deficits in inferring others' social emotions in autism

    Get PDF
    Recent studies have suggested oxytocin's therapeutic effects on deficits in social communication and interaction in autism spectrum disorder through improvement of emotion recognition with direct emotional cues, such as facial expression and voice prosody. Although difficulty in understanding of others' social emotions and beliefs under conditions without direct emotional cues also plays an important role in autism spectrum disorder, no study has examined the potential effect of oxytocin on this difficulty. Here, we sequentially conducted both a case-control study and a clinical trial to investigate the potential effects of oxytocin on this difficulty at behavioural and neural levels measured using functional magnetic resonance imaging during a psychological task. This task was modified from the Sally-Anne Task, a well-known first-order false belief task. The task was optimized for investigation of the abilities to infer another person's social emotions and beliefs distinctively so as to test the hypothesis that oxytocin improves deficit in inferring others' social emotions rather than beliefs, under conditions without direct emotional cues. In the case-control study, 17 males with autism spectrum disorder showed significant behavioural deficits in inferring others' social emotions (P = 0.018) but not in inferring others' beliefs (P = 0.064) compared with 17 typically developing demographically-matched male participants. They also showed significantly less activity in the right anterior insula and posterior superior temporal sulcus during inferring others' social emotions, and in the dorsomedial prefrontal cortex during inferring others' beliefs compared with the typically developing participants (P 10 voxels). Then, to investigate potential effects of oxytocin on these behavioural and neural deficits, we conducted a double-blind placebo-controlled crossover within-subject trial for single-dose intranasal administration of 24 IU oxytocin in an independent group of 20 males with autism spectrum disorder. Behaviourally, oxytocin significantly increased the correct rate in inferring others' social emotions (P = 0.043, one-tail). At the neural level, the peptide significantly enhanced the originally-diminished brain activity in the right anterior insula during inferring others' social emotions (P = 0.004), but not in the dorsomedial prefrontal cortex during inferring others' beliefs (P = 0.858). The present findings suggest that oxytocin enhances the ability to understand others' social emotions that have also required second-order false belief rather than first-order false beliefs under conditions without direct emotional cues in autism spectrum disorder at both the behaviour and neural levels

    Network structure underlying resolution of conflicting non-verbal and verbal social information

    Get PDF
    Social judgments often require resolution of incongruity in communication contents. Although previous studies revealed that such conflict resolution recruits brain regions including the medial prefrontal cortex (mPFC) and posterior inferior frontal gyrus (pIFG), functional relationships and networks among these regions remain unclear. In this functional magnetic resonance imaging study, we investigated the functional dissociation and networks by measuring human brain activity during resolving incongruity between verbal and non-verbal emotional contents. First, we found that the conflict resolutions biased by the non-verbal contents activated the posterior dorsal mPFC (post-dmPFC), bilateral anterior insula (AI) and right dorsal pIFG, whereas the resolutions biased by the verbal contents activated the bilateral ventral pIFG. In contrast, the anterior dmPFC (ant-dmPFC), bilateral superior temporal sulcus and fusiform gyrus were commonly involved in both of the resolutions. Second, we found that the post-dmPFC and right ventral pIFG were hub regions in networks underlying the non-verbal- and verbal-content-biased resolutions, respectively. Finally, we revealed that these resolution-type-specific networks were bridged by the ant-dmPFC, which was recruited for the conflict resolutions earlier than the two hub regions. These findings suggest that, in social conflict resolutions, the ant-dmPFC selectively recruits one of the resolution-type-specific networks through its interaction with resolution-type-specific hub regions

    Magnetic tunnel junctions with metastable bcc Co3Mn electrodes

    Get PDF
    We studied magnetic tunnel junctions (MTJs) with a MgO(001) barrier and metastable bcc Co3Mn(001) disordered alloy electrodes. A tunnel magnetoresistance (TMR) ratio was approximately 200{250% observed at room temperature.We successfully observed the TMR ratio greater than 600% at 10 K which was higher than the past reported value of MgO-based MTJs with ultrathin bcc Co(001) electrodes. However our experimental value was still much lower than the past theoretical prediction in bcc Co/MgO/Co(001) MTJs. We discuss some differences in the bulk band structure affecting the TMR effect for bcc Co and bcc Co3Mn

    Distillation of hydrogen isotopes for polarized HD target

    Full text link
    We have developed a cryogenic distillation system to purify Hydrogen-Deuteride (HD) gas for a polarized HD target in LEPS experiments at SPring-8. A small amount of ortho-H2_2 (\sim0.01%) in the HD gas plays an important role in efficiently polarizing the HD target. Since there are 1\sim5% impurities of H2_2 and D2_2 in commercially available HD gases, it is inevitable that the HD gas is purified up to \sim99.99%. The distillation system has a cryogenic pot (17\sim21 K) containing many small stainless steel cells called Heli-pack. Commercial HD gas with an amount of 5.2 mol is fed into the pot. We carried out three distillation runs by changing temperatures (17.5 K and 20.5 K) and gas extraction speeds (1.3 ml/min and 5.2 ml/min). The extracted gas was analyzed by using a gas analyzer system combining a quadrupole mass spectrometer with a gas chromatograph. The HD gas of 1 mol with a purity better than 99.99% has been successfully obtained. The effective NTS (Number of Theoretical Stages), which is an indicator of the distillator performances, is obtained as 37.2±\pm0.6. This value is in reasonable agreement with a designed value of 37.9. The HD target is expected to be efficiently polarized under a well-controlled condition by doping an optimal amount of ortho-H2_2 to the purified HD gas.Comment: 7 pages, 8 figures, 2 tables, updated 2011-12-1
    corecore