79 research outputs found
Phenotypic Heterogeneity in Mycobacterial Stringent Response
A common survival strategy of microorganisms subjected to stress involves the
generation of phenotypic heterogeneity in the isogenic microbial population
enabling a subset of the population to survive under stress. In a recent study,
a mycobacterial population of M. smegmatis was shown to develop phenotypic
heterogeneity under nutrient depletion. The observed heterogeneity is in the
form of a bimodal distribution of the expression levels of the Green
Fluorescent Protein (GFP) as reporter with the gfp fused to the promoter of the
rel gene. The stringent response pathway is initiated in the subpopulation with
high rel activity.In the present study, we characterize quantitatively the
single cell promoter activity of the three key genes, namely, mprA, sigE and
rel, in the stringent response pathway with gfp as the reporter. The origin of
bimodality in the GFP distribution lies in two stable expression states, i.e.,
bistability. We develop a theoretical model to study the dynamics of the
stringent response pathway. The model incorporates a recently proposed
mechanism of bistability based on positive feedback and cell growth retardation
due to protein synthesis. Based on flow cytometry data, we establish that the
distribution of GFP levels in the mycobacterial population at any point of time
is a linear superposition of two invariant distributions, one Gaussian and the
other lognormal, with only the coefficients in the linear combination depending
on time. This allows us to use a binning algorithm and determine the time
variation of the mean protein level, the fraction of cells in a subpopulation
and also the coefficient of variation, a measure of gene expression noise.The
results of the theoretical model along with a comprehensive analysis of the
flow cytometry data provide definitive evidence for the coexistence of two
subpopulations with overlapping protein distributions.Comment: 24 pages,8 figures, supplementary information and 5 supplementary
figure
Isolation and characterization of an extracellular lipase from the conidia of Neurospora cvassa
A triacylglycerol lipase (EC 3.1.1.3) from the conidia of Neurospora crassa was purified and characterized. The enzyme was purified by Sephadex G-100 column chromatography. Homogeneity was checked by PAGE, and isoelectric focusing gave a single band corresponding to a pI of 6.4. The enzyme had an apparent Mr 54000≥1000 as determined by gel filtration. SDS-PAGE gave a single band of Mr 27000, suggesting the presence of two identical subunits. This lipase preferred triglycerides with C16- and C18-fatty acyl chains. It cleaved only the primary groups of triglycerides. The lipase also exhibited a marked preference for substrates containing endogenously occurring fatty acids and so may prove useful in detailed studies on the physiological relevance of fatty acyl specificity of lipases. The enzyme was not affected by detergents, or thiol-binding agents. Modification of free amino groups caused 90% inhibition, suggesting a role of these groups in the maintenance of lipase activity
The serine/threonine kinase PknB of Mycobacterium tuberculosis phosphorylates PBPA, a penicillin-binding protein required for cell division
A cluster of genes encoded by ORFs Rv0014c-Rv0018c in Mycobacterium tuberculosis encodes candidate cell division proteins RodA and PBPA, a pair of serine/threonine kinases (STPKs), PknA and PknB, and a phosphatase, PstP. The organization of genes encompassing this region is conserved in a large number of mycobacterial species. This study demonstrates that recombinant PBPA of M. tuberculosis binds benzylpenicillin. Knockout of its counterpart in M. smegmatis resulted in hindered growth and defective cell septation. The phenotype of the knockout (PBPA-KO) could be restored to that of the wild-type upon expression of PBPA of M. tuberculosis. PBPA localized to the division site along with newly synthesized peptidoglycan, between segregated nucleoids. In vivo coexpression of PBPA and PknB, in vitro kinase assays and site-specific mutagenesis substantiated the view that PknB phosphorylates PBPA on T362 and T437. A T437A mutant could not complement PBPA-KO. These studies demonstrate for the first time that PBPA, which belongs to a subclass of class B high-molecular-mass PBPs, plays an important role in cell division and cell shape maintenance. Signal transduction mediated by PknB and PstP likely regulates the positioning of this PBP at the septum, thereby regulating septal peptidoglycan biosynthesis
Mycotin: a lectin involved in the adherence of Mycobacteria to macrophages
Pathogenic Mycobacteria colonize host macrophages. Attachement of these organisms to macrophages is the preliminary step prior to invasion of the macrophages by the bacteria. Western blot confirmed that walls of Mycobacterium avium and Mycobacterium tuberculosis contain molecules which are immunologically related to mycotin, a lectin found in Mycobacterium smegmatis. We have demonstrated that the adherence of Mycobacteria to macrophages is significantly inhibited by anti-mycotin antibody or the mycotin-specific sugar, mannan. These observations suggest that prevention of the interaction of mycotin-related molecules on the surfaces of Mycobacteria with mannose-specific receptors on macrophages, offers an important approach for blocking attachment of pathogenic Mycobacteria to macrophages, thereby preventing infection
Human erythrocyte membrane protein 4.2 is palmitoylated
Protein 4.2 is a major protein of the human erythrocyte membrane. It has previously been shown to be N-myristoylated. After labeling of intact human erythrocytes with [3H]palmitic acid, radioactivity was found to be associated with protein 4.2 by immunoprecipitation of peripheral membrane proteins extracted at pH 11 from ghosts with anti-(4.2) sera, followed by SDS/PAGE and fluorography. The fatty acid linked to protein 4.2 was identified as palmitic acid after hydrolysis of protein and thin-layer chromatography of the fatty acid extracted in the organic phase. Protein 4.2 could be depalmitoylated with hydroxylamine, suggesting a thioester linkage. Depalmitoylated protein 4.2 showed significantly decreased binding to protein-4.2-depleted membranes, compared to native protein 4.2
Execution of macrophage apoptosis by Mycobacterium avium through apoptosis signal-regulating kinase 1/p38 mitogen-activated protein kinase signaling and Caspase 8 activation
Macrophage apoptosis is an important component of the innate immune defense machinery (against pathogenic mycobacteria) responsible for limiting bacillary viability. However, little is known about the mechanism of how apoptosis is executed in mycobacteria-infected macrophages. Apoptosis signal-regulating kinase 1 (ASK1) was activated in Mycobacterium avium-treated macrophages and in turn activated p38 mitogen-activated protein (MAP) kinase. M. avium-induced macrophage cell death could be blocked in cells transfected with a catalytically inactive mutant of ASK1 or with dominant negative p38 MAP kinase arguing in favor of a central role of ASK1/p38 MAP kinase signaling in apoptosis of macrophages challenged with M. avium. ASK1/p38 MAP kinase signaling was linked to the activation of caspase 8. At the same time, M. avium triggered caspase 8 activation, and cell death occurred in a Fas-associated death domain (FADD)-dependent manner. The death signal induced upon caspase 8 activation linked to mitochondrial death signaling through the formation of truncated Bid (t-Bid), its translocation to the mitochondria and release of cytochrome c. Caspase 8 inhibitor (z-IETD-FMK) could block the release of cytochrome c as well as the activation of caspases 9 and 3. The final steps of apoptosis probably involved caspases 9 and 3, since inhibitors of both caspases could block cell death. Of foremost interest in the present study was the finding that ASK1/p38 signaling was essential for caspase 8 activation linked to M. avium-induced death signaling. This work provides the first elucidation of a signaling pathway in which ASK1 plays a central role in innate immunity
Mycobacterium tuberculosis lipoarabinomannan-mediated IRAK-M induction negatively regulates toll-like receptor-dependent interleukin-12 p40 production in macrophages
Mannose-capped lipoarabinomannans (Man-LAMs) are members of the repertoire of Mycobacterium tuberculosis modulins that the bacillus uses to subvert the host innate immune response. Interleukin-12 (IL-12) production is critical for mounting an effective immune response by the host against M. tuberculosis. We demonstrate that Man-LAM inhibits IL-12 p40 production mediated by subsequent challenge with lipopolysaccharide (LPS). Man-LAM inhibits LPS-induced IL-12 p40 expression in an IL-10-independent manner. It attenuates LPS-induced NF-κB-driven luciferase gene expression, suggesting that its effects are likely directly related to inhibition of NF-κB. This is probably because of dampening of the Toll-like receptor signaling. Man-LAM inhibits IL-1 receptor-associated kinase (IRAK)-TRAF6 interaction as well as IκB-α phosphorylation. It directly attenuates nuclear translocation and DNA binding of c-Rel and p50. Man-LAM exerts these effects by inducing the expression of Irak-M, a negative regulator of TLR signaling. Knockdown of Irak-M expression by RNA interference reinstates LPS-induced IL-12 production in Man-LAM-pretreated cells. The fact that Irak-M expression could be elicited by yeast mannan suggested that ligation of the mannose receptor by the mannooligosaccharide caps of LAM was the probable trigger for IRAK-M induction
Helicobacter pylori protein HPO175 transactivates epidermal growth factor receptor through TLR4 in gastric epithelial cells
The pathophysiology of Helicobacter pylori-associated gastroduodenal diseases, ulcerogenesis, and carcinogenesis is intimately linked to activation of epidermal growth factor receptor (EGFR) and production of vascular endothelial growth factor (VEGF). Extracellular virulence factors, such as CagA and VacA, have been proposed to regulate EGFR activation and VEGF production in gastric epithelial cells. We demonstrate that the H. pylori secretory protein, HP0175, by virtue of its ability to bind TLR4, transactivates EGFR and stimulates EGFR-dependent VEGF production in the gastric cancer cell line AGS. Knock-out of the hp0175 gene attenuates the ability of the resultant H. pylori strain to activate EGFR or to induce VEGF production. HP0175-induced activation of EGFR is preceded by translocation of TLR4 into lipid rafts. In lipid rafts, the Src kinase family member Lyn interacts with TLR4, leading to tyrosine phosphorylation of TLR4. Knockdown of Lyn prevents HP0175-induced activation of EGFR and VEGF production. Tyrosine-phosphorylated TLR4 interacts with EGFR. This interaction is necessary for the activation of EGFR. Disruption of lipid rafts with methyl β-cyclodextrin prevents HP0175-induced tyrosine phosphorylation of TLR4 and activation of EGFR. This mechanism of transactivation of EGFR is novel and distinct from that of metalloprotease-dependent shedding of EGF-like ligands, leading to autocrine activation of EGFR. It provides new insight into our understanding of the receptor cross-talk network
Overexpression and functional characterization of an ABC transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis
The genes encoding ABC transporters occupy 2.5% of the genome of Mycobacterium tuberculosis . However, none of these putative ABC transporters has been characterized so far. We describe the development of expression systems for simultaneous expression of the ATP binding protein DrrA and the membrane integral protein DrrB which together behave as a functional doxorubicin efflux pump. Doxorubicin uptake in Escherichia coli or Mycobacterium smegmatis expressing DrrAB was inhibited by reserpine, an inhibitor of ABC transporters. The localization of DrrA to the membrane depended on the simultaneous expression of DrrB. ATP binding was positively regulated by doxorubicin and daunorubicin. At the same time, DrrB appeared to be sensitive to proteolysis when expressed alone in the absence of DrrA. Simultaneous expression of the two polypeptides was essential in order to obtain a functional doxorubicin efflux pump. Expression of DrrAB in E. coli conferred 8-fold increased resistance to ethidium bromide, a cationic compound. 2',7'-bis-(2-carboxyethyl)-5(-and 6)-carboxyfluorescein (BCECF), a neutral compound also behaved as a substrate of the reconstituted efflux pump. When expressed in M. smegmatis, DrrAB conferred resistance to a number of clinically relevant, structurally unrelated antibiotics. The resistant phenotype could be reversed by verapamil and reserpine, two potent inhibitors of ABC transporters
Caspase 3-mediated proteolysis of the N-terminal cytoplasmic domain of the human erythroid anion exchanger 1 (band 3)
The N-terminal cytoplasmic domain of the anion exchanger 1 (AE1 or band 3) of the human erythrocyte associates with peripheral membrane proteins to regulate membrane-cytoskeleton interactions, with glycolytic enzymes such as glyceraldehyde-3-phosphate dehydrogenase and aldolase, with the protein-tyrosine kinase p72syk, with hemoglobin and with hemichromes. We have demonstrated that the N-terminal cytoplasmic domain of band 3 (CDB3) is a substrate of the apoptosis executioner caspase 3 (1). CDB3 has two non-conventional caspase 3 cleavage sites, TATD45 and EQGD205 (2). In vitro treatment of recombinant CDB3 with caspase 3 generated two fragments, which could be blocked by pretreatment with the caspase 3 inhibitor Z-DEVD-fmk (3). Recombinant CDB3 in which the caspase 3 cleavage sites Asp45 and Asp205 were mutated, was resistant to proteolysis (4). Proteolytically derived fragments crossreactive with polyclonal anti-band 3 antibody appeared with simultaneous cleavage of poly (ADP-ribose) polymerase and procaspase 3 in staurosporine (STS)-treated HEK293 cells transiently transfected with CDB3 (5). In vivo cleavage of CDB3 could be blocked by pretreatment of cells with Z-DEVD-fmk or in cells transfected with mutant CDB3 (D45A, D205A) (6). Co-transfection experiments showed that STS-mediated cleavage of CDB3 diminished its interaction with the N-terminal domain of protein 4.2, confirming that such cleavage interferes with the interaction of CDB3 with cytoskeletal proteins (7). Active caspase 3 was observed in aged red cells but not in young cells. This red cell caspase 3 could cleave band 3 present in inside-out vesicles prepared from young erythrocytes arguing in favor of a physiological role of caspase 3 in aged erythrocytes
- …