23 research outputs found

    Diffuse Spectra Model of Photoluminescence in Carbon Quantum Dots

    Get PDF
    The attractive aspect of excitation related to fluorescence nature in carbon quantum dots (CQD) has guided to several assumptions correlated with clusters size distribution, shapes as well as presence of different emissive states. In this study, a dimer–excimer model of photoluminescence (PL) in CQD describing discrete multiple electronic states for the excitation-dependent emission is described. The functional dependence of the characteristic width of the diffuse spectra of PL on the size of a quantum dots are calculated. The effective width of PL spectrum can be tuned from 0.1 to 1 eV

    Relaxation of the Energy of Optically Excited States in the Carbon Quantum Dots

    Get PDF
    Recently, in connection with the achievement of new technological opportunities for fabrication nanostructured carbon-containing objects, namely, carbon quantum dots (CQDs) and clusters, studies of their various physical properties have been intensively carried out. Investigation of the photoluminescence (PL) properties of these objects have revealed a number of unique features: a wide structureless band of the radiation in the ultraviolet and visible regions of the spectrum, the fluorescent kinetics of the luminescence decay, and the independence of the long-wavelength edge of the band on the excitation quantum energy. Similar features of PL are observed early in the different nanostructured carbon-containing materials. A common structural feature of the different nanostructured carbon-containing materials, such as CQD, liquid and solid aromatic hydrocarbons, amorphous hydrogenated carbon films, natural biopolymer – collagen is the existence of carbon sextets-aromatic rings connected by Van der Waals forces. This representation of the structure made it possible in the present work to develop a dimer-excimer model of radiative processes in the CQD. The studies are related to the prospects of application due to the unique combination of a number of key properties including tunable photoluminescence, important for the development of tunable lasers, biomedical applications where photostability, biocompatibility, molecular dimensions are essential to allow chemical connection with any biomolecule without compromising its functions. Further development of the theory of PL mechanisms in the CQD can help to identify other important features of the studied objects that will be of fundamental and practical importance

    Charge and Discharge Behaviour of Li-Ion Batteries at Various Temperatures Containing LiCoO2 Nanostructured Cathode Produced by CCSO

    Get PDF
    There are technical barriers for penetration market requesting rechargeable lithium-ion battery packs for portable devices that operate in extreme hot and cold environments. Many portable electronics are used in very cold (-40 °C) environments, and many medical devices need batteries that operate at high temperatures. Conventional Li-ion batteries start to suffer as the temperature drops below 0 °C and the internal impedance of the battery increases. Battery capacity also reduced during the higher/lower temperatures. The present work describes the laboratory made lithium ion battery behaviour features at different operation temperatures. The pouch-type battery was prepared by exploiting LiCoO2 cathode material synthesized by novel synthetic approach referred as Carbon Combustion Synthesis of Oxides (CCSO). The main goal of this paper focuses on evaluation of the efficiency of positive electrode produced by CCSO method. Performance studies of battery showed that the capacity fade of pouch type battery increases with increase in temperature. The experimental results demonstrate the dramatic effects on cell self-heating upon electrochemical performance. The study involves an extensive analysis of discharge and charge characteristics of battery at each temperature following 30 cycles. After 10 cycles, the battery cycled at RT and 45 °C showed, the capacity fade of 20% and 25% respectively. The discharge capacity for the battery cycled at 25 °C was found to be higher when compared with the battery cycled at 0 °C and 45 °C. The capacity of the battery also decreases when cycling at low temperatures. It was important time to charge the battery was only 2.5 hours to obtain identical nominal capacity under the charging protocol. The decrease capability of battery cycled at high temperature can be explained with secondary active material loss dominating the other losses

    Fabrication of Yttrium Ferrite Nanoparticles by Solution Combustion Synthesis

    Get PDF
    The ternary oxide system Y-Fe-O presents fascinating magnetic properties that are sensitive to the crystalline size of particles. There is a major challenge to fabricate these materials in nano-crystalline forms due to particle conglomeration during nucleation and synthesis. In this paper we report the fabrication of nano sized crystalline yttrium ferrite by solution combustion synthesis (SCS) where yttrium and iron nitrates were used as metal precursors with glycine as a fuel. The magnetic properties of the product can be selectively controlled by adjusting the ratio of glycine to metal nitrates. Yttrium ferrite nano-powder was obtained by using three concentration of glycine (3, 6 and 10 wt.%) in the initial exothermic mixture. Increasing glycine content was found to increase the reaction temperature of the system. The structural and magnetic properties of yttrium ferrite before and after annealing at temperature of 1000 °C were investigated by X-ray diffractometry, Differential Scanning Calorimetry (DSC) and cryogenic magnetometry (PPMS, Quantum Design). X-ray diffraction showed that, a broad diffraction peak was found for all samples indicating the amorphous nature of the product. Particle size and product morphology analysis identified that, Nitrate/ glycine combustion caused considerable gas evolution, mainly carbon dioxide, N2 and H2O vapor, which caused the synthesized powders to become friable and loosely agglomerated for glycine concentration from 3 wt.% up to 10 wt.%. The study of the magnetic properties of produced materials in a metastable state was performed by measuring dependencies of Magnetization (M) on temperature, and magnetization on magnetic field strength between 5 K and 300 K. Magnetization measurements on temperature zero-fieldcooled and field-cooled show different patterns when the fraction of glycine is increased. The analysis of zero-field-cooled (ZFC), field-cooled (FC) and magnetization curves of annealed samples confirmed that nanoparticles exhibit superparamagnetic behavior. The increasing concentration of glycine leads to an increased blocking temperature

    Charge and Discharge Behaviour of Li-Ion Batteries at Various Temperatures Containing LiCoO2 Nanostructured Cathode Produced by CCSO

    Get PDF
    There are technical barriers for penetration market requesting rechargeable lithium-ion battery packs for portable devices that operate in extreme hot and cold environments. Many portable electronics are used in very cold (-40 °C) environments, and many medical devices need batteries that operate at high temperatures. Conventional Li-ion batteries start to suffer as the temperature drops below 0 °C and the internal impedance of the battery increases. Battery capacity also reduced during the higher/lower temperatures. The present work describes the laboratory made lithium ion battery behaviour features at different operation temperatures. The pouch-type battery was prepared by exploiting LiCoO2 cathode material synthesized by novel synthetic approach referred as Carbon Combustion Synthesis of Oxides (CCSO). The main goal of this paper focuses on evaluation of the efficiency of positive electrode produced by CCSO method. Performance studies of battery showed that the capacity fade of pouch type battery increases with increase in temperature. The experimental results demonstrate the dramatic effects on cell self-heating upon electrochemical performance. The study involves an extensive analysis of discharge and charge characteristics of battery at each temperature following 30 cycles. After 10 cycles, the battery cycled at RT and 45 °C showed, the capacity fade of 20% and 25% respectively. The discharge capacity for the battery cycled at 25 °C was found to be higher when compared with the battery cycled at 0 °C and 45 °C. The capacity of the battery also decreases when cycling at low temperatures. It was important time to charge the battery was only 2.5 hours to obtain identical nominal capacity under the charging protocol. The decrease capability of battery cycled at high temperature can be explained with secondary active material loss dominating the other losses

    Fabrication of Yttrium Ferrite Nanoparticles by Solution Combustion Synthesis

    Get PDF
    The ternary oxide system Y-Fe-O presents fascinating magnetic properties that are sensitive to the crystalline size of particles. There is a major challenge to fabricate these materials in nano-crystalline forms due to particle conglomeration during nucleation and synthesis. In this paper we report the fabrication of nano sized crystalline yttrium ferrite by solution combustion synthesis (SCS) where yttrium and iron nitrates were used as metal precursors with glycine as a fuel. The magnetic properties of the product can be selectively controlled by adjusting the ratio of glycine to metal nitrates. Yttrium ferrite nano-powder was obtained by using three concentration of glycine (3, 6 and 10 wt.%) in the initial exothermic mixture. Increasing glycine content was found to increase the reaction temperature of the system. The structural and magnetic properties of yttrium ferrite before and after annealing at temperature of 1000 °C were investigated by X-ray diffractometry, Differential Scanning Calorimetry (DSC) and cryogenic magnetometry (PPMS, Quantum Design). X-ray diffraction showed that, a broad diffraction peak was found for all samples indicating the amorphous nature of the product. Particle size and product morphology analysis identified that, Nitrate/glycine combustion caused considerable gas evolution, mainly carbon dioxide, N2 and H2O vapor, which caused the synthesized powders to become friable and loosely agglomerated for glycine concentration from 3 wt.% up to 10 wt.%. The study of the magnetic properties of produced materials in a metastable state was performed by measuring dependencies of Magnetization (M) on temperature, and magnetization on magnetic field strength between 5 K and 300 K. Magnetization measurements on temperature zero-fieldcooled and field-cooled show different patterns when the fraction of glycine is increased. The analysis of zero-field-cooled (ZFC), field-cooled (FC) and magnetization curves of annealed samples confirmed that nanoparticles exhibit superparamagnetic behavior. The increasing concentration of glycine leads to an increased blocking temperature

    Electrochemical features of combustion-synthesized lithium cobaltate as cathode material for lithium ion battery

    No full text
    Lithium cobaltate (LiCoO2) was produced by carbon combustion synthesis of oxide (CCSO) using carbon nanoparticles as a fuel. In this method, the exothermic oxidation of carbon nanoparticles with an average size of 5 nm (specific surface 80 m2/g) gives rise to a self-propagating thermal wave with maximum temperatures of up to 900°C. The thermal front rapidly propagates through the mixture of solid reactants converting it to lithium cobaltate. XRD data suggest that the as-synthesized products were single phase. Carbon is not incorporated in the product and is evolved from the reaction zone as gaseous CO2. Thermogravimetric analysis was used to identify the features of interaction in the LiNO3-Co3O4-C system. The key features affecting the process-carbon pre-concentration in the reacting mixture and oxygen infiltration to the reaction zone-led to the formation of layered structure of LiCoO2 and affected the particle sizes. The synthesized crystalline nanoparticles were nearly spherical, and their average particle diameters ranged between 60 and 200 nm
    corecore