10,429 research outputs found
Technical Report: Cooperative Multi-Target Localization With Noisy Sensors
This technical report is an extended version of the paper 'Cooperative
Multi-Target Localization With Noisy Sensors' accepted to the 2013 IEEE
International Conference on Robotics and Automation (ICRA).
This paper addresses the task of searching for an unknown number of static
targets within a known obstacle map using a team of mobile robots equipped with
noisy, limited field-of-view sensors. Such sensors may fail to detect a subset
of the visible targets or return false positive detections. These measurement
sets are used to localize the targets using the Probability Hypothesis Density,
or PHD, filter. Robots communicate with each other on a local peer-to-peer
basis and with a server or the cloud via access points, exchanging measurements
and poses to update their belief about the targets and plan future actions. The
server provides a mechanism to collect and synthesize information from all
robots and to share the global, albeit time-delayed, belief state to robots
near access points. We design a decentralized control scheme that exploits this
communication architecture and the PHD representation of the belief state.
Specifically, robots move to maximize mutual information between the target set
and measurements, both self-collected and those available by accessing the
server, balancing local exploration with sharing knowledge across the team.
Furthermore, robots coordinate their actions with other robots exploring the
same local region of the environment.Comment: Extended version of paper accepted to 2013 IEEE International
Conference on Robotics and Automation (ICRA
From open resources to educational opportunity
Since MIT’s bold announcement of the OpenCourseWare initiative in 2001, the content of over 700 of its courses have been published on the Web and made available for free to the world. Important infrastructure initiatives have also been launched recently with a view to enabling the sustainable implementation of these educational programmes, through strengthening organizational capacity as well as through building open, standards‐based technology. Each of these initiatives point to a rich palette of transformational possibilities for education; together with the growing open source movement, they offer glimpses of a sustainable ecology of substantial and quality educational resources. This discussion piece will highlight some of the educational opportunity presented by MIT’s current information technology‐enabled educational agenda and related initiatives, along with their strategic underpinnings and implications. It will address various dimensions of their impact on the form and function of education. It will examine how these ambitious programmes achieve a vision characterized by an abundance of sustainable, transformative educational opportunities, not merely pervasive technology
Privacy-Preserving Vehicle Assignment for Mobility-on-Demand Systems
Urban transportation is being transformed by mobility-on-demand (MoD)
systems. One of the goals of MoD systems is to provide personalized
transportation services to passengers. This process is facilitated by a
centralized operator that coordinates the assignment of vehicles to individual
passengers, based on location data. However, current approaches assume that
accurate positioning information for passengers and vehicles is readily
available. This assumption raises privacy concerns. In this work, we address
this issue by proposing a method that protects passengers' drop-off locations
(i.e., their travel destinations). Formally, we solve a batch assignment
problem that routes vehicles at obfuscated origin locations to passenger
locations (since origin locations correspond to previous drop-off locations),
such that the mean waiting time is minimized. Our main contributions are
two-fold. First, we formalize the notion of privacy for continuous
vehicle-to-passenger assignment in MoD systems, and integrate a privacy
mechanism that provides formal guarantees. Second, we present a scalable
algorithm that takes advantage of superfluous (idle) vehicles in the system,
combining multiple iterations of the Hungarian algorithm to allocate a
redundant number of vehicles to a single passenger. As a result, we are able to
reduce the performance deterioration induced by the privacy mechanism. We
evaluate our methods on a real, large-scale data set consisting of over 11
million taxi rides (specifying vehicle availability and passenger requests),
recorded over a month's duration, in the area of Manhattan, New York. Our work
demonstrates that privacy can be integrated into MoD systems without incurring
a significant loss of performance, and moreover, that this loss can be further
minimized at the cost of deploying additional (redundant) vehicles into the
fleet.Comment: 8 pages; Submitted to IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 201
- …