933 research outputs found
On the Tradeoff between Energy Harvesting and Caching in Wireless Networks
Self-powered, energy harvesting small cell base stations (SBS) are expected
to be an integral part of next-generation wireless networks. However, due to
uncertainties in harvested energy, it is necessary to adopt energy efficient
power control schemes to reduce an SBSs' energy consumption and thus ensure
quality-of-service (QoS) for users. Such energy-efficient design can also be
done via the use of content caching which reduces the usage of the
capacity-limited SBS backhaul. of popular content at SBS can also prove
beneficial in this regard by reducing the backhaul usage. In this paper, an
online energy efficient power control scheme is developed for an energy
harvesting SBS equipped with a wireless backhaul and local storage. In our
model, energy arrivals are assumed to be Poisson distributed and the popularity
distribution of requested content is modeled using Zipf's law. The power
control problem is formulated as a (discounted) infinite horizon dynamic
programming problem and solved numerically using the value iteration algorithm.
Using simulations, we provide valuable insights on the impact of energy
harvesting and caching on the energy and sum-throughput performance of the SBS
as the network size is varied. Our results also show that the size of cache and
energy harvesting equipment at the SBS can be traded off, while still meeting
the desired system performance.Comment: To be presented at the IEEE International Conference on
Communications (ICC), London, U.K., 201
A Delay-Optimal Packet Scheduler for M2M Uplink
In this paper, we present a delay-optimal packet scheduler for processing the
M2M uplink traffic at the M2M application server (AS). Due to the
delay-heterogeneity in uplink traffic, we classify it broadly into
delay-tolerant and delay-sensitive traffic. We then map the diverse delay
requirements of each class to sigmoidal functions of packet delay and formulate
a utility-maximization problem that results in a proportionally fair
delay-optimal scheduler. We note that solving this optimization problem is
equivalent to solving for the optimal fraction of time each class is served
with (preemptive) priority such that it maximizes the system utility. Using
Monte-Carlo simulations for the queuing process at AS, we verify the
correctness of the analytical result for optimal scheduler and show that it
outperforms other state-of-the-art packet schedulers such as weighted round
robin, max-weight scheduler, fair scheduler and priority scheduling. We also
note that at higher traffic arrival rate, the proposed scheduler results in a
near-minimal delay variance for the delay-sensitive traffic which is highly
desirable. This comes at the expense of somewhat higher delay variance for
delay-tolerant traffic which is usually acceptable due to its delay-tolerant
nature.Comment: Accepted for publication in IEEE MILCOM 2016 (6 pages, 7 figures
Side Information Generation in Distributed Video Coding
Distributed Video Coding (DVC) coding paradigm is based largely on two theorems of Information Theory and Coding, which are Slepian-wolf theorem and Wyner-Ziv theorem that were introduced in 1973 and 1976 respectively. DVC bypasses the need of performing Motion Compensation (MC) and Motion Estimation (ME) which are largely responsible for the complex encoder in devices. DVC instead relies on exploiting the source statistics, totally/partially, at only the decoder. Wyner-Ziv coding, a particular case of DVC, which is explored in detail in this thesis. In this scenario, two correlated sources are independently encoded, while the encoded streams are decoded jointly at the single decoder exploiting the correlation between them. Although the distributed coding study dates back to 1970’s, but the practical efforts and developments in the field began only last decade. Upcoming applications (like those of video surveillance, mobile camera, wireless sensor networks) can rely on DVC, as they don’t have high computational capabilities and/or high storage capacity. Current coding paradigms, MPEG-x and H.26x standards, predicts the frame by means of Motion Compensation and Motion Estimation which leads to highly complex encoder. Whilst in WZ coding, the correlation between temporally adjacent frames is performed only at the decoder, which results in fairly low complex encoder. The main objective of the current thesis is to investigate for an improved scheme for Side Information (SI) generation in DVC framework. SI frames, available at the decoder are generated through the means of Radial Basis Function Network (RBFN) neural network. Frames are estimated from decoded key frames block-by-block. RBFN network is trained offline using training patterns from different frames collected from standard video sequences
- …